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ABSTRACT 
 

Pathophysiological alterations in the basolateral amygdala and neurodegeneration 

of limbic structures during epileptogenesis induced by status epilepticus 

by 

Felicia Qashu 

 

As a model of epileptogenesis and temporal lobe epilepsy (TLE), status 

epilepticus (SE) triggers structural and functional neuronal changes that take place during 

a latent period of weeks or months after SE, followed by the development of spontaneous 

seizures.  Neuronal loss and synaptic reorganizations of limbic structures during 

epileptogenesis in the rat brain are similar to neuropathological observations in TLE 

patients.  The development of regimens that can inhibit epileptogenesis requires 

understanding the alterations that occur during epileptogenesis in brain regions that are 

important in epilepsy.  The amygdala plays a central role in the symptomatology and 

pathogenesis of TLE, and of the amygdala nuclei, the basolateral nucleus of the amygdala 

(BLA) is the most important for the initiation and spread of seizure activity.  Therefore, 

we investigated alterations in the BLA that accompany epileptogenesis, the extent of 

neurodegeneration during epileptogenesis in limbic structures important in TLE, and 

whether termination of prolonged SE with diazepam reduces this neurodegeneration.   

In brain sections from adult rats, at 7 to 10 days after SE induced by kainic acid, 

whole-cell recordings from BLA pyramidal neurons showed a significant reduction in the 

frequency and amplitude of action potential-dependent spontaneous inhibitory post-

synaptic currents (IPSCs), and a reduced frequency but not amplitude of miniature IPSCs 
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compared to sham rats. The reduced inhibition could be accounted for by the loss of 

GABAergic neurons, which, with the use of design-based stereology combined with 

GAD67 immunohistochemistry, was found to be significantly more extensive than the 

loss of principal cells. A reduced level of the GluR5 kainate receptor subunit, as revealed 

by Western blot analysis, was accompanied by impairment in the GluR5 kainate receptor-

mediated modulation of IPSCs, which could have contributed to the reduction of 

spontaneous IPSCs. Compensatory mechanisms appeared to be underway, as Western 

blot analysis revealed an increased level of glutamate decarboxylase and the alpha1 

subunit of the GABAA receptor. Thus, due to a high vulnerability of BLA GABAergic 

neurons to seizure-induced damage, tonic inhibition in the BLA is significantly reduced 

at a relatively early stage of epileptogenesis, which may facilitate the progression towards 

the development of epilepsy.  

To compare the extent of neurodegeneration during epileptogenesis in limbic 

structures, degenerating cells were quantified in the amygdala, hippocampus, piriform 

cortex, and endopiriform nucleus in brain sections stained with Fluoro-Jade C at 7-10 

days after uninterrupted SE, and after SE terminated with diazepam.  We found that 

neurodegeneration at this time point in epileptogenesis is the most extensive in the 

endopiriform nucleus, followed by the amygdala, with both structures showing 

significantly more neurodegeneration than the piriform cortex and the hippocampus.  

Compared to when SE was not interrupted, neurodegeneration was significantly 

attenuated when SE was terminated after 3 hours with diazepam, in all structures but the 

hippocampus, with the most protection occurring in the amygdala and piriform cortex.  

These data suggest that the amygdala, a structure highly important in the development of 



 v 

TLE and co-morbid mood disorders, undergoes substantial neurodegeneration during 

epileptogenesis, but is responsive to the GABAA-mediated protection from neuronal loss 

after prolonged SE. 
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CHAPTER 1 
 
 
Introduction 

 

Temporal Lobe Epilepsy 

 Epileptic disorders are chronic neurological disorders characterized by the 

occurrence of spontaneous, recurrent seizures.  The etiology, ictal phenomenology, and 

semiology of epileptic seizures and syndromes are used to categorize epileptic disorders. 

For example, the terms idiopathic, symptomatic, and cryptogenic are used to describe the 

etiology of epilepsies of a primary, secondary, or unknown underlying cause, 

respectively.  Idiopathic epilepsies are usually genetically determined, and largely 

benign, with no identifiable structural lesions (Bendabis, 2001).  Symptomatic epilepsies 

arise secondarily from one or more pathological insults with identifiable lesions, such as 

head trauma, stroke, tumors, infections, or status epilepticus (Annegers et al., 1980; 

Salazar et al., 1985; Hesdorffer et al., 1998; Angeleri et al., 1999). Cryptogenic epilepsies 

have an unidentified underlying cause, and thus are also called presumed symptomatic 

epilepsies. 

 Although more diverse ictal phenomena exist, a largely dichotomous 

classification of epileptic seizures materializes from ictal onset: focal and generalized.  In 

focal seizures (also called “localization-related”, and formerly called “partial”), ictal 

onset is regional, or limited to one hemisphere, and may become secondarily generalized 

to both hemispheres. Generalized seizures are characterized by diffuse ictal activity that 

begins in both hemispheres simultaneously.   
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 Epilepsy disorders are one of the most common neurological disorders, affecting 

more than 1% of the population (Elger, 2002; Wiestler and Blümcke, 2002).  Temporal 

lobe epilepsy (TLE) is the most common of the focal epilepsies (Engel, 2001; Bendabis, 

2001), and is so called TLE because the focal seizures in TLE patients are most often of 

temporal lobe origin, that can become secondarily generalized (Engel, 1996).  The 

semiology of temporal lobe seizures, based on ictal signs and symptoms, is described by 

epigastric rising, emotional changes (most commonly fear), and olfactory or gustatory 

hallucinations (Engel, 1996).  Like other symptomatic epileptic syndromes, TLE can be 

caused by an initial precipitating injury (IPI), such as traumatic brain injury (TBI), 

vascular insults, cerebral infections, or status epilepticus (Annegers et al., 1980; Salazar 

et al., 1985; Hesdorffer et al., 1998; Angeleri et al., 1999).   In such incidences, the IPI 

triggers structural and functional neuronal changes that occur during a seizure-free latent 

period that ranges from weeks to several years (French et al., 1993; Mathern et al., 1995; 

Treib et al., 1996; Benardo, 2003), culminating with the occurrence of spontaneous 

seizures; this process, in which the normal brain becomes epileptic, is called 

epileptogenesis (Figure 1).  Current anti-epileptic drugs (AEDs) are used as 

anticonvulsants to control seizures once epilepsy has developed, however about a third of 

epilepsy patients are resistant to available AEDs, and an even higher rate of refractoriness 

is seen in TLE (Leppik, 1992).  The latent period between the IPI and appearance of 

spontaneous seizures offers a time window for anti-epileptogenic therapeutics to prevent 

or reduce the severity of the developing disorder.  

 Epilepsy associated with brain insults has been recognized for many years; results 

from Phase II of the Vietnam Head Injury Study found that 51% of patients with a  
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Figure 1:  The process of epileptogenesis.  An initial precipitating insult such as 

traumatic brain injury (TBI), stroke, tumor, or an episode of status epilepticus (SE) can 

trigger epileptogenesis.  During a seizure-free latent period of weeks, months, or years, 

circuit reorganizations and cell death lead to the occurrence of spontaneous seizures and 

epilepsy.  In about 30% of patients, anti-epileptic drugs (AEDs) fail to control seizures; 

these patients have drug-refractory epilepsy. 

Initial Precipitating Insult 
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penetrating head injury had developed epilepsy 15 years later (Salazar et al., 1985).  

Although the severity of the TBI is related to the risk of developing epilepsy (Annegers et 

al., 1998; Skandsen et al., 2008), even mild TBI can trigger epileptogenesis (Annegers et 

al., 1998).  The increasing number of members of the armed services experiencing mild 

TBI from combat in the Middle East and nearby regions has spawned major interest in 

the study of pathophysiological, epileptogenic mechanisms.  

Several neuropathological features are common among TLE patients; whether 

these pathologies are a consequence of recurrent seizures, or if they contribute to the 

epileptogenic process is not well understood.  For example, lesions of limbic structures 

observed in TLE patients can often be attributed to an initial insult, such as a head trauma 

or cerebral infection (Mathern et al., 1995), but in some patients, there is no history of an 

underlying initial insult, or no identifiable lesions until after seizures are observed 

(Stafstrom et al., 1996).  Nonetheless, in TLE patients where AEDs fail to control 

seizures, surgical resection of the hippocampus, amygdala, and/or the parahippocampal 

cortex often abolishes the seizures (Falconer, 1967), emphasizing the important role of 

temporal lobe structures in generating and/or maintaining epileptic activity in TLE. 

Hippocampal sclerosis is one of the most frequently reported histopathological 

observations in tissue from TLE patients (Margerison and Corsellis, 1966; Babb and 

Brown, 1987; Bruton, 1988).  In hippocampal sclerosis, pyramidal cells of the CA1 and 

CA3 regions, granule cells of the dentate gyrus, hilar neurons are preferentially damaged 

(Babb, 1991), and glial cells are hypertrophied.  Because neuronal loss and gliosis 

commonly extends to other medial temporal lobe structures, such as the amygdala and the 

entorhinal cortex, the term “mesial temporal sclerosis” (MTS) is often used to describe 
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the neuropathology of TLE patients (Falconer et al., 1964; Margerison and Corsellis, 

1966; Bruton, 1988); in patients which have MTS, and the term mesial temporal lobe 

epilepsy (MTLE) is therefore sometimes used instead of TLE.  

In addition to neuronal loss, aberrant axonal sprouting and synaptic reorganization 

has also been observed in tissue from TLE patients (Sutula et al., 1989).  In the normal 

hippocampus, dentate granule cells project their mossy fiber axons to CA3 neurons; in 

the hippocampus of the epileptic human temporal lobe, mossy fiber terminals abnormally 

found in the supragranular region of the dentate gyrus make synapses on dentate granule 

cells, forming a recurrent excitatory connection (Sutula et al., 1989).  Mossy fiber 

sprouting (MFS) is detected with Timm immunohistochemistry, which selectively labels 

mossy fiber terminals due to their high zinc content (Ibata and Otsuka, 1969).  Because 

genetically mutant mice with MFS also have spontaneous seizures (Qiao and Noebels, 

1993), and MFS occurs before the development of spontaneous seizures in animal models 

of TLE (Mello et al., 1993), it is believed that MFS plays an important role in the 

epileptogenic process.   

 Additionally, the granule cell layer of the hippocampus is widened in a 

subpopulation of patients with TLE; this has been termed granule cell dispersion, as 

granule neurons are found abnormally in the hilus and inner molecular layer of the 

dentate gyrus (Houser, 1990; Armstrong, 1993). Because seizures induce an increase in 

neurogenesis in the dentate gyrus in animal models of TLE (Parent et al., 1997; 

Scharfman et al., 2000), it is hypothesized that granule cell dispersion may result from a 

malpositioning of newly born granule cells.  Increased neurogenesis has not been shown 
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in the human epileptic hippocampus (Fahrner et al., 2007); granule cell dispersion may 

conversely be due to aberrant migration of differentiated granule cells.   

 In addition to cell loss and synaptic reorganizations, glial hypertrophy is also 

observed in patients with TLE (Eid et al., 2008).  Epileptic discharges are in part 

triggered by an abnormal local depolarization shift that drives neurons into synchronous 

bursting.  These abnormal depolarization shifts can be initiated by extrasynaptic 

glutamate (Tian et al., 2005).  Glial cells, such as astrocytes, can release glutamate, via a 

calcium-dependent mechanism (Parpura et al., 1994); this observation has prompted the 

hypothesis that glutamate released by astrocytes is associated with the synchronous firing 

of neurons that produces epileptic discharges (Heinemann et al., 1999).  Thus, the 

pathological activation of astrocytes may play an important role in epileptogenesis. 

 

 

TLE Animal Models 

 A number of animal models are available to study epileptogenesis and TLE; the 

most common are the status epilepticus induced TLE and kindling models in rodents 

(Table 1).  The kindling model is characterized by daily electrical stimulations of limbic 

structures in vivo that are initially sub-threshold for seizure generation, and, after a 

number of stimulations, generate electrographic after-discharges and seizures of 

increasing intensity and duration (Goddard, 1967).  Kindling has been associated with 

TLE because kindled seizures are focal with limbic origin, that can become secondarily  
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Table 1: Features of animal models of epileptogenesis that are similar to 

observations in patients with temporal lobe epilepsy (TLE) 

 

 
Latent 
Period 

Spontaneous 
Seizures 

Pathology Similar to 
TLE 

References 

Kindling No No 

• Synaptic 
reorganizations 

• Cell loss 
• Memory 
Impairments 

• Sutula et al., 1988 
• Kotloski et al., 2002;     

Löscher  and Ebert, 
1996 

• Sutula et al., 1995 

Kainic acid or 
pilocarpine-
induced SE 

Yes Yes 

• Synaptic 
reorganizations 

• Cell loss, gliosis 
• Receptor subunit 
changes 

• Memory 
Impairments 

• Tauck and Nadler, 
1985 

• Ben-Ari, 1985; 
Covolan   and Mello, 
2000 

• Gibbs et al., 1997;    
Schwarzer et al., 1997 

• Kemppainen et al., 
2006 

Stimulation-
induced SE 

Yes Yes 

• Synaptic 
reorganizations 

• Cell loss, gliosis 
• Memory 
Impairments 

• Sloviter, 1987 
• Nissinen et al., 2000 
• Kemppainen et al., 

2006 
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generalized, based on observations from electrographic discharges and behavioral 

automatisms that are elicited by activation of limbic structures, followed by diffuse 

electrographic epileptiform discharges with accompanying behaviors defined as 

generalized seizures (Racine, 1972). Changes in synaptic transmission elicited by 

repeated kindled seizures trigger morphological reorganizations and functional deficits 

that lead to enhanced seizure susceptibility (McIntyre and Racine, 1986). One major 

advantage of the kindling model is the option to select precise time points in 

epileptogenesis, based on the number of stimulation-induced kindled seizures, to study 

the progressive cellular and molecular mechanisms that generate enhanced seizure 

susceptibility. Further, potential anti-epileptogenic therapeutics can be tested using this 

model, by aiming to block the development of kindling.  However, criticisms of kindling 

as a model of TLE include the requirement of hundreds of stimulations (over-kindling) to 

produce spontaneous seizures (Löscher , 1997), which defines epilepsy.      

 Alternatively, SE in rodents is also a widely used model of epileptogenesis and 

TLE.  Status epilepticus is an episode of prolonged seizure activity, without return to 

baseline electrographic or behavioral function between seizures.  During a seizure-free 

latent period after SE, structural and functional neuronal changes occur, that contribute to 

epileptogenesis and the development of spontaneous seizures (Cavalheiro et al., 1982; 

Tauck and Nadler, 1985; Cronin and Dudek, 1988; Lothman et al., 1990; Leite et al., 

2002).  Not only is SE-induced epileptogenesis justified as a model of TLE by the latent 

period and occurrence of spontaneous seizures, neuropathological observations in the rat 

brain after SE are similar to those observed in patients with TLE (Table 1; Nadler, 1981; 

Ben-Ari, 1985; Tauck and Nadler, 1985; Pitkänen et al., 1998; Covolan and Mello, 2000; 
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Gorter et al., 2001; Chen and Buckmaster, 2005).  Particularly, extensive 

neurodegeneration of limbic structures after SE (Nadler, 1981; Turski et al., 1983; Ben 

Ari, 1985; Covolan and Mello, 2000; Chen and Buckmaster, 2005), as well as aberrant 

axonal sprouting in the hippocampus (Tauck and Nadler, 1985; Nissinen et al., 2000), are 

frequent pathologies of TLE patients (Falconer et al., 1964; Margerison and Corsellis, 

1966; Bruton, 1988; Sutula et al., 1989).  Status epilepticus can be induced by 

chemoconvulsants, such as kainic (Nadler, 1981; Best et al., 1993; Sperk, 1994) or 

pilocarpine (Turski et al., 1983), or by electrical stimulation of the amygdala (Nissinen et 

al., 2000) or hippocampus (Sloviter, 1987; Lothman et al., 1990; Mazarati et al., 1998).  

The epileptogenic latent period can last 1 week to several months in the SE model, before 

the onset of spontaneous seizures (Cavalheiro et al., 1991; Hellier et al., 1998; Nissinen et 

al., 2000).  Animals treated with kainic acid, which triggers seizures via its direct 

activation of glutamate receptors to induce SE, are more likely to survive and later 

develop spontaneous seizures compared to pilocarpine-induced SE, which may be due to 

more extensive neuronal damage caused by pilocarpine-induced SE (Covolan and Mello, 

2000). 

 

Neuropathology of Epileptogenesis 

  The use of animal models of TLE has unraveled morphological and structural 

alterations that may contribute to hyperexcitability of limbic structures during 

epileptogenesis.  One of the hallmarks of such alterations is loss of hilar and CA1 

interneurons in the hippocampus (Sloviter, 1987; Lowenstein et al., 1992; Best et al., 

1993; Obenhaus et al., 1993; Houser and Esclapez, 1996; Morin et al., 1998; Sun et al., 
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2007). Most often this is accompanied by reduced inhibitory activity (Rice et al., 1996; 

Cossart et al., 2001; Kobayashi and Buckmaster, 2003; Shao and Dudek, 2005; Sun et al., 

2007), but unaltered or enhanced inhibition has also been observed in some areas of the 

epileptic hippocampus (Nusser et al., 1998; Cossart et al., 2001; Shao and Dudek, 2005). 

Furthermore, it is becoming apparent that the changes occurring after the initial 

epileptogenesis-triggering insult, leading to an imbalance between GABAergic and 

glutamatergic activity, do not follow a linear progression (see Straessle et al., 2003; El-

Hassar et al., 2007; Rocha et al., 2007). For example, enhanced inhibition or reduced 

inhibition can be found in the CA1 area at different stages of epileptogenesis (El-Hassar 

et al., 2007). These derangements in GABAergic inhibition are not only due to loss of 

GABAergic neurons, but also to alterations at many levels, such as mossy fiber sprouting 

and the formation of aberrant recurrent excitatory circuits (Tauck and Nadler, 1985; 

Nissinen et al., 2000), changes in the activity of glutamate decarboxylase (Baran et al., 

2004), or expression and synaptic distribution of the different subunits of GABAA 

receptors (Schwarzer et al., 1997; Gibbs et al., 1997; Brooks-Kayal et al.,1998; Raol et 

al., 2006; Zhang et al., 2007). 

 Despite the importance of the amygdala in TLE, much less is known about the 

functional or morphological changes that occur within this brain structure during 

epileptogenesis (Aroniadou-Anderjaska et al., 2008).  In rat models of SE, the amygdala 

undergoes extensive degeneration; the greatest cell loss in the amygdala is observed in 

the anterior and posterior cortical, and medial nuclei, as well as in portions of the lateral, 

basolateral, and central nuclei (Tuunanen et al., 1996; Tuunanen et al., 1999).  Damage in 

the lateral and basolateral nuclei includes a loss of GABAergic neurons (Tuunanen et al., 
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1996).  Likewise, impairments in GABAergic inhibitory transmission have been reported 

previously in the amygdala of epileptic rats (Gean et al., 1989; Smith and Dudek, 1997; 

Mangan et al., 2000; Benini and Avoli, 2006). In the rat BLA, spontaneous IPSPs are 

reduced or absent at 2 months after SE induced by hippocampal stimulation (Mangan et 

al., 2000), and hyperexcitable field responses are at least partly due to reduced inhibition, 

in epileptic rats (Smith and Dudek, 1997).  However, it is not known whether inhibitory 

dysfunction is present in the BLA during epileptogenesis, before the onset of spontaneous 

seizures. 

 Apart from the hippocampus and amygdala, the piriform cortex and the adjacent 

endopiriform nucleus also undergo significant neuronal loss in animal models of 

epileptogenesis, and are important in the propagation of seizures (Piredda and Gale, 

1985; Löscher and Ebert, 1996; Sperber et al., 1998).  The piriform cortex is one of the 

most susceptible brain regions to damage after SE (Sperk, 1994; Covolan and Mello, 

2000), and has an even faster kindling rate than the amygdala (McIntyre and Plant, 1989).  

The adjacent endopiriform nucleus has a low threshold for spike activity, as well as a fast 

kindling rate, and recently has gained attention for being important in epileptogenesis (for 

a review see Majak and Moryś, 2007).  

   

Status Epilepticus and Pharmacoresistance 

Status epilepticus  in humans is defined as a seizure which shows no signs of 

arrest clinically, or without resumption of baseline central nervous system function 

interictally, of a duration of 5 minutes or more (Shorvon, 2001; Chen and Wasterlain, 

2006).  SE is an acute medical emergency associated with a high risk of mortality and 
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morbidity (Logroscino et al., 2002).  Unlike seizures that are self-limiting, seizures 

during SE are enduring, and must be controlled pharmacologically as soon as possible; 

otherwise prolonged seizure-induced neuropathological processes can occur (Treiman, 

2007).  Benzodiazepines are the first-line therapy for SE; benzodiazepines allosterically 

modulate specific benzodiazepine-sensitive GABAA receptors to increase the efficiency 

of GABAA receptor-mediated inhibition (Macdonald and Olsen, 1994; McKernan and 

Whiting, 1996).  SE becomes refractory to benzodiazepines if treatment is not 

administered early, (Treiman et al., 1998), and more aggressive second- and third-line 

antiepileptic drugs must be used (Löscher, 2007; Riss et al., 2008).  After an episode of 

SE, patients have a high risk of developing epilepsy (Hesdorffer et al., 1998).   

Similar to SE in humans, in animal models of TLE, in which SE triggers 

epileptogenesis, as the duration of SE increases, seizure termination with the 

benzodiazepine, diazepam, becomes less successful (Walton and Treiman, 1988; Jones et 

al., 2002), prolonged-seizure induced neuronal damage ensues (Meldrum and Horton, 

1973; Corsellis and Bruton, 1983; DeGiorgio et al., 1995), and much higher 

concentrations of the drug are required to be effective at interrupting SE (Bleck, 1999; 

Jones et al., 2002).  SE duration is correlated with the extent of neurodegeneration 

(Lemos and Cavalheiro, 1995; Gorter et al., 2003), therefore minimizing the variation of 

SE duration is important to maintain homogeneity within groups of rats when using 

animal models to study epileptogenesis.  Thus, termination of SE pharmacologically is 

necessary to minimize variation of SE duration, but should be done at least 90 minutes 

after SE onset, as 90 minutes of SE is necessary to induce epileptogenesis and the 

development of spontaneous seizures (Lemos and Cavalheiro, 1995; Brandt et al., 2003).  
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Because benzodiazepines lose anticonvulsant efficacy in the first hour of SE, higher non-

lethal doses are necessary to successfully terminate SE (Bleck, 1999; Jones et al., 2002). 

Diazepam’s weakened anticonvulsant effect with increasing duration of SE has 

been associated with alterations in the functional properties of GABAA receptors in the 

hippocampus (Kapur and Macdonald, 1997), specifically, an internalization of GABAA 

receptors that occurs within the first hour of SE (Goodkin et al., 2005; Naylor et al., 

2005; Feng et al., 2008).  Furthermore, diazepam administered early, within 2 hours after 

SE initiation, reduces neuronal loss in the hippocampus, but this effect is not evident if 

diazepam is administered 3 hours after SE initiation (Pitkänen et al., 2005).  Thus, the 

neuroprotective potential of diazepam is reduced in the hippocampus after prolonged SE.  

It is not currently known whether this also occurs in other limbic regions associated with 

epileptogenesis and TLE that are vulnerable to seizure-induced neuronal injury.   

 

Amygdala: Function and Anatomy 

 The amygdala is a limbic structure of the medial temporal lobe that is intimately 

associated with the neurobiology of emotional behavior. Via reciprocal connections with 

the cerebral cortex, the thalamus and other subcortical structures, the amygdala receives 

information from all sensory modalities, and plays a central role in assessing the 

emotional significance and modulating the consolidation of this information, as well as 

organizing a behavioral response (LeDoux, 1992; Davis, 1994; McGaugh et al., 1996; 

Fanselow and Gale, 2003; Sah et al., 2003). 

 The amygdala is comprised of more than ten nuclei (Figure 2; Amaral et al., 

1992).   The left and right amygdala are monosynaptically connected, and there are also  
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Figure 2: Anatomy of amygdala nuclei and amygdalar connections with other 

cortical and subcortical structures; those involved in the induction, propagation, 

and/or maintenance of limbic seizure activity are listed in red.  Arrow thickness 

indicates density of connections (Pitkänen, 2000).  AB, accessory basal nucleus; BLA, 

basolateral nucleus; Ce, central nucleus; COa, anterior cortical nucleus; La, lateral 

nucleus; Me, medial nucleus. 
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vast inter- and intra- nuclear connections between and within the amygdala nuclei 

(Ottersen, 1982).  Tract-tracing studies indicate that information coming into the 

amygdala follows a lateral to medial flow, from the basolateral complex to the main 

output group, the centromedial amygdala (Sah et al., 2003).  The basolateral amygdaloid 

complex is comprised of the lateral, basolateral, and the accessory basal nuclei (Krettek 

and Price, 1978).  The basolateral nucleus (BLA) of the basolateral complex is further 

segregated into magnocellular, intermediate, and parvocellular divisions (Amaral et al., 

1992), distinguished by large, medium, and small sized neuronal morphologies, 

respectively; connections within and between each of these divisions also exist.  The 

BLA receives input from all sensory modalities, as well as from memory and autonomic 

systems.  Via the external capsule, the BLA receives excitatory input from the frontal, 

parietal, and olfactory cortices, the hippocampus, hypothalamus, and thalamus (Fig 2; 

Amaral et al., 1992; Sah et al., 2003). Projections from the BLA to the frontal cortex and 

hippocampus are more extensive than from any of the other amygdaloid nuclei (Amaral 

et al., 1992).  Other extra-amygdaloid outputs from the BLA also include projections to 

the thalamus, striatum, and nucleus accumbens (Sah et al., 2003).   

 Unlike the structural organization of hippocampal pyramidal neurons and 

interneurons, neurons in the BLA are randomly situated (McDonald, 1984).  

Glutamatergic, excitatory neurons are the most prominent cell type in the BLA and are, 

accordingly, also called principal neurons.  Principal neurons in the BLA are pyramidal 

in shape with numerous dendritic spines, or semi-pyramidal in shape and sparsely 

spinous (Tosevski et al., 2002).  GABAergic inhibitory interneurons are aspiny, are 

spherical or fusiform in shape, and have slightly smaller soma compared to principal 
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neurons (McDonald, 1982; Smith & Pare, 1994; Tosevski et al., 2002).  The axons of 

pyramidal cells have substantial local collaterals, which target local interneurons and 

other nearby pyramidal cells (Smith et al., 2000).  Additionally, interneurons are 

interconnected locally, forming a local network of synaptic activity (Lang and Pare, 

1998).  Principal neurons in the BLA can also be distinguished from interneurons 

electrophysiologically, whereby principal neurons fire a single spike and then 

accommodate in response to a depolarizing pulse, while interneurons in response to the 

same depolarizing pulse fire a non-accommodating high-frequency spike discharge 

(Washburn and Moises, 1992). Additionally, principal neurons in the BLA are further 

electrophysiologically discernible from interneurons by the presence of the 

hyperpolarization-activated cation current, produced by hyperpolarization-activated and 

cyclic-nucleotide-gated ion channels (Mahanty and Sah, 1998; Park et al., 2007). 

 Several populations of interneurons have been described in the BLA, based on the 

expression of neuropeptides or calcium binding proteins.  Parvalbumin-expressing 

interneurons make up about 50% of the interneuron population in the BLA, often co-

localizing with calbindin (McDonald and Betette, 2001).  Other populations of 

interneurons in the BLA include somatostatin-expressing interneurons (McDonald and 

Mascagni, 2002), those expressing cholecystokinin and either calretinin or vasoactive 

intestinal peptide, and those expressing cholecystokinin but not calretinin or vasoactive 

intestinal peptide (Mascagni and McDonald, 2003). 
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Amygdala and Temporal Lobe Epilepsy 

Is the amygdala important in epileptogenesis and epilepsy? Although a frequent 

pathology observed in TLE is hippocampal sclerosis (Margerison and Corsellis, 1966; 

Babb and Brown, 1987; Bruton, 1988), neuronal loss and gliosis in the amygdala is also 

reported in a significant subpopulation of patients (Margerison and Corsellis, 1966; 

Bruton, 1988; Armstrong, 1993; Hudson et al., 1993).  Overall, it is estimated that 30-

50% of drug-refractory TLE patients have amygdala damage (Margerison and Corsellis, 

1966; Bruton, 1988); isolated amygdala damage has also been observed (Miller et al., 

1994).  Furthermore, either the amygdala or the hippocampus is most often the focus of 

ictal onset in temporal lobe seizures (Quesney, 1986; Isokawa-Akesson et al., 1987; 

Dewar et al., 1996; Pitkänen et al., 1998).  Thus, temporal lobectomy is often a necessary 

procedure when anti-epileptic drugs fail to control seizures in drug-refractory TLE (Babb 

and Brown, 1987), and amygdalectomy alone is sufficient to eliminate seizures in some 

cases (Feindel and Rasmussen, 1991; Jooma et al., 1995). Since the amygdala modulates 

cognitive functions and plays an essential role in emotional behavior (LeDoux, 1992; 

Davis, 1994; McGaugh et al., 1996; Fanselow and Gale, 2003; Sah et al., 2003) and 

affective disorders (Drevets, 1999; Rauch et al., 2000; Chen et al., 2005), as well as in 

sexual behavior (Kostarczyk, 1986; Salamon et al., 2005), amygdala dysfunction in TLE 

is important not only for its role in the generation of seizures, but also for its role in the 

behavioral, cognitive (Kanner, 2006; Swinkels et al., 2006; Briellmann et al., 2007; 

Richardson et al., 2007), and sexual (Herzog et al., 2003; Harden, 2006) dysfunctions that 

often are reported in epilepsy patients.   
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The role of the amygdala in epileptogenesis and TLE may be even more 

significant than the hippocampus (for a review see Aroniadou-Anderjaska et al., 2008).  

The amygdala requires a lower stimulation threshold and fewer stimulations to generate 

kindled seizures, compared to the hippocampus (Goddard et al., 1969; McIntyre and 

Racine, 1986).  Particularly, the BLA is important in the initiation and spread of seizure 

activity.  The BLA is responsible for the generation and spread of status epilepticus, even 

when seizures are evoked in extra-amygdaloid regions (White and Price, 1993a,b), and 

has a lower stimulation threshold for inducing status epilepticus than other amygdala 

nuclei or the piriform cortex (Mohapel et al., 1996).  In amygdalar slices from epileptic 

rats, the BLA is hyperexcitable, with multiple action potential bursts (Mangan et al., 

2000) and reduced spontaneous inhibitory post-synaptic potentials (Smith and Dudek, 

1997; Mangan et al., 2000).  The BLA is also more prone to the generation of 

epileptiform activity when compared to the lateral nucleus of the amygdala in the 

epileptic rat brain (Nittykoski et al., 2004).  Nevertheless, there is limited knowledge on 

the pathological and pathophysiological alterations that occur in the BLA during 

epileptogenesis.   

 

GluRK5, Amygdala, and Epilepsy 

 Kainate receptors are one of the three subtypes of ionotropic glutamate receptors, 

and are tetramers made from five subunits: GluR5, GluR6, GluR7, KA1, and KA2.  

GluR5, GluR6, and GluR7 are low affinity subunits that form functional homomeric 

receptors, as well as heteromeric receptors with other subunits (Bettler et al., 1990; 

Sommer et al., 1992; Egebjerg and Heinemann, 1993), while the higher affinity KA1 and 
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KA2 subunits can only form functional subunits when expressed as heteromers with the 

GluR5, GluR6, or GluR7 subunits (Herb et al., 1992; Schiffer et al., 1997). 

Kainate receptors mediate fast excitatory synaptic transmission (Castillo et al., 

1997; Cossart et al., 1998), modulate transmitter release at both excitatory and inhibitory 

synapses, and are involved in short- and long-term synaptic plasticity mechanisms 

(Huettner, 2003; Lerma, 2003).  In situ hybridization studies have shown that mRNA 

levels of GluR5, GluR6 and KA2 subunits are highly expressed in the amygdala (Braga 

et al., 2003).  Particularly, the GluR5 subunit is higher in the amygdala than in other brain 

regions, and is concentrated in the BLA and medial nuclei (Braga et al., 2003). Therefore, 

GluR5-containing kainate receptors (GluR5KR) may play a prominent role in both 

physiological and pathological conditions of this brain region.  

The balance between excitation and inhibition in the brain is maintained by a 

number of mechanisms, including neurotransmitters and neuromodulators acting on 

somatodendritic receptors, where they mediate or modulate neuronal responses to 

synaptic input, or on receptors at presynaptic terminals, where they directly modulate 

neurotransmitter release.  In the BLA, GluR5KRs that are present on somatodendritic 

areas of both excitatory and inhibitory neurons contribute to synaptic transmission; 

GluR5KRs on GABAergic presynaptic terminals modulate GABA release (Braga et al., 

2003; Braga et al., 2004).  It has been shown previously that the specific GluR5KR 

agonist, ATPA, enhances the frequency and amplitude of spontaneous GABAergic 

currents (sIPSCs) recorded from BLA pyramidal cells in the BLA in vitro (Braga et al., 

2003), suggesting that GluR5KR activation depolarizes inhibitory interneurons.  

GluR5KRs are also present on GABAergic terminals contacting pyramidal cells, and 
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activation of these receptors bidirectionally modulates the release of GABA, such that 

low concentrations ATPA enhanced GABA release at interneuron to pyramidal cell 

synapses, while high concentrations depressed it (Braga et al., 2003).   

  Recently, an interest in the GluR5KRs, which are highly expressed in the 

amygdala compared to the hippocampus (Bettler et al., 1990; Li et al., 2001; Braga et al., 

2003), has emerged as being important in epileptogenesis and epilepsy (Aroniadou-

Anderjaska et al., 2007).  Activation of GluR5KRs by the agonist ATPA in the BLA can 

induce epileptiform discharges in vitro (Rogawski et al., 2003), or seizure activity by 

systemic or intra-amygdaloid injections in vivo (Rogawski et al., 2003; Kaminski et al., 

2004).  GluR5KR antagonists can prevent the induction of limbic seizures induced in vivo 

by pilocarpine or by electrical stimulation (Smolders et al., 2002).   Evidence that 

GluR5KRs play an important role in TLE comes from the findings that there are 

alterations in both the function of GluR5KRs (Kortenbruck et al., 2001; Palma et al., 

2002) and the expression of the GluR5 subunit in TLE patients (Mathern et al., 1998) and 

epileptic rats (Ullal et al., 2005).  However, it is not known if the function of GluR5KRs 

is altered during epileptogenesis, in the BLA.  

 

Summary 

Understanding the nature of the structural and functional alterations that lead to 

the development of epilepsy is crucial for the discovery of disease modifying therapies 

that can inhibit epileptogenesis, or reduce the severity of the developing disease. Despite 

the importance of amygdala in the pathogenesis of TLE, little is known about the 
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pathological and pathophysiological changes that occur in this brain structure during 

epileptogenesis.   

 

Hypothesis: Neuropathological and pathophysiological alterations occur in the 

amygdala, in particular the basolateral nucleus of the amygdala, after kainic acid-

induced SE, that may contribute to epileptogenesis.  

 

Aim 1: To determine if GABAergic inhibitory function is impaired in the 

basolateral amygdala during epileptogenesis.  Because a derangement in the 

GABAergic system is often observed in hyperexcitable, epileptic circuits, we used the 

kainic acid-induced SE model of TLE to study inhibitory function in the BLA during 

epileptogenesis.  By recording spontaneous inhibitory post-synaptic currents (IPSCs) and 

miniature (IPSCs) from BLA pyramidcal cells (Figure 3) at 7-10 days after kainic acid-

induced SE, we investigated alterations in the GABAergic system in the BLA during 

epileptogenesis.  We also used design-based stereology to quantify the total number of 

neurons remaining in the BLA, as well as the number of GABAergic neurons remaining 

in the BLA, at 7-10 days after kainic acid-induced SE, compared to sham controls. 

 

Aim 2:  To examine the extent of neurodegeneration in limbic structures 

during epileptogenesis after kainic acid-induced SE, and to determine if 

administration of diazepam after prolonged SE reduces this neurodegeneration.  

Neuroprotection after prolonged SE has important implications in epileptogenesis, not  
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Figure 3.  Spontaneous and minitiature inhibitory post-synaptic currents (IPSCs). 

(a) To identify alterations in overall tonic inhibition in the BLA during epileptogenesis, 

we measured spontaneous GABA release by recroding spontaneous IPSCs from BLA 

pyramidal cells at 7-10 days after kainic acid-induced SE.  (b)  To identify alterations in 

the quantal release of GABA in the BLA during epileptogenesis, we recorded miniature 

IPSCs from BLA pyramidal cells at 7-10 days after kainic acid-induced SE. 
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only for disease modification, but also for preventing subsequent neurological 

dysfunction, such as the cognitive deficits and/or mood disorders observed in some TLE 

patients (Benuzzi et al., 2004; Beyenburg 2005; Kondziella, 2007).  We quantified 

degenerating neurons from brain sections 7-9 days after SE with  Fluoro-Jade C, a 

fluorescent compound that selectively binds to degenerating neurons, to compare the 

extent of neurodegeneration in limbic structures that are important in epileptogenesis and 

TLE, and to assess the neuroprotective efficacy of SE termination with diazepam.   
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Abstract 

The basolateral amygdala (BLA) plays a central role in mesial temporal lobe epilepsy 

(MTLE) yet little is known about the functional changes within the nucleus that 

accompany epileptogenesis. Here we investigated GABA-mediated inhibition in the rat 

BLA following kainate-induced status epilepticus, a model of MTLE. The experiments 

were conducted 7 to 10 days after status epilepticus, when epileptiform discharges were 

apparent on the EEG, but before the occurrence of spontaneous motor seizures. Whole-

cell recordings from BLA pyramidal neurons in brain slices showed a reduction in the 

frequency and amplitude of action potential-dependent spontaneous IPSCs, and a reduced 

frequency but not amplitude of miniature IPSCs. In addition, there was impairment in 

GluR5 kainate receptor-modulation of GABAergic synaptic activity, which ordinarily 

maintains inhibitory tone within the BLA. Design-based stereology demonstrated a 15% 

reduction in total neuronal counts in the BLA of rats that had experienced status 

epilepticus, but there was a 43% decrease in GAD67 immunoreactive GABA neurons, 

indicating that these neurons are selectively vulnerable. Fluoro-Jade C staining showed 

ongoing neuronal degeneration. There was also a reduction in GluR5 subunit expression 

as revealed by Western blot analysis, consistent with defective GluR5 receptor function. 

In the status epilepticus model of MTLE, selective loss of GABA inhibitory neurons and 

impaired function of surviving GABA neurons leads to reduced inhibitory function, 

which contributes to hyperexcitability and a propensity toward epileptiform activity and 

seizure discharges. 
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Introduction 

The epilepsies are episodic neurological disorders characterized by the occurrence of 

recurrent seizures. In a significant proportion of patients, epilepsy follows an acute brain 

insult such as traumatic brain injury, stroke, or a period of prolonged and intense seizures 

(status epilepticus). When an acute brain insult is the etiological factor, the symptoms of 

epilepsy often appear after a seizure-free latent period following the acute injury (Dudek 

et al., 2002). During this seizure-free period, which can vary from months to years 

(French et al., 1993; Mathern et al., 1995), neuronal networks in certain brain regions 

undergo structural and functional changes that lead to hyperexcitability and eventually to 

the expression of spontaneous seizures; this process is referred to as epileptogenesis 

(Dalby and Mody, 2001). 

In mesial temporal lobe epilepsy (MTLE), the most common type of epilepsy in 

adults (Benbadis, 2001; Engel, 2001), the hippocampus and the amygdala play central 

roles, and either of them, or both, can be considered epileptic foci (Quesney, 1986; 

Goldring et al., 1992; Gotman and Levtova, 1996; Bragin et al., 2005; Bragin et al., 

2007). A variety of animal models have been used to study the pathophysiology of 

MTLE. One of the most common is the “post-status epilepticus model” in which epilepsy 

develops over the course of days to weeks after a sustained period of intense seizure 

activity (White, 2002; Leite et al., 2002). During the latent period before the appearance 

of spontaneous behavioral seizures, epileptiform events are observed in the 

electroencephalogram (EEG) and neurons in the CA1 region and the dentate gyrus of the 

hippocampus display signs of hyperexcitability such as increased bursting in response to 
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stimulation (Mangan and Bertram, 1998; Kobayashi and Buckmaster, 2003; Sloviter et 

al., 2006; El-Hassar et al., 2007). 

A great deal of information has been accumulated on the structural and functional 

changes in the hippocampus that accompany epileptogenesis in this model. Many 

investigators have observed a loss of interneurons (Sloviter, 1987; Lowenstein et al., 

1992; Best et al., 1993; Obenhaus et al., 1993; Houser and Esclapez, 1996; Morin et al., 

1998; Sun et al., 2007), most often accompanied by reduced inhibitory activity (Rice et 

al., 1996; Hirsch et al., 1999; Cossart et al., 2001; Kobayashi and Buckmaster, 2003; 

Shao and Dudek, 2005; Sun et al., 2007). Unaltered or enhanced inhibition have also 

been observed in some areas of the epileptic hippocampus (Nusser et al., 1998; Cossart et 

al., 2001; Shao and Dudek, 2005; Sloviter et al., 2006). Overall, however, there is 

substantial evidence that the hyperexcitability of epileptic hippocampal networks in post-

status epilepticus models results from an imbalance between excitatory glutamatergic and 

inhibitory GABAergic synaptic drive such that GABA-mediated inhibition is relatively 

weakened. The imbalance appears to evolve during the latent period and precede the 

appearance of overt behavioral seizures (El-Hassar et al., 2007). 

Despite the importance of the amygdala in MTLE, there is little information on 

functional changes that occur within this brain structure during epileptogenesis 

(Aroniadou-Anderjaska et al., 2008). In the present study, we investigated the 

consequences of kainic acid (KA)-induced status epilepticus on GABA neurons and 

GABA-mediated inhibitory function in the amygdala of young adult rats. We focused on 

the basolateral nucleus, which, of all the amygdala nuclei, plays the most important role 

in the initiation and spread of seizures (White and Price, 1993a, 1993b; Mohapel et al., 
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1996). We found a loss of GABA neurons as well as defective function of GluR5 kainate 

receptors on the surviving GABA neurons, which together may contribute to 

hyperexcitability in the nucleus. 

 

Materials and Methods 

Animals. Experiments were performed on male Sprague-Dawley rats (Taconic Farms, 

Rockville, MD), 5–6 weeks old, weighing 170–200 g at the start of the experiments. 

Animals were individually housed in an animal facility approved by the 

Association for Assessment and Accreditation of Laboratory Animal Care, in an 

environmentally controlled room (20–23°C, 12-h light/12-h dark cycle, lights on 07:00 

a.m.), with food and water available ad libitum. All animal use procedures were in 

accordance with the National 
Institutes of Health Guide for the Care and Use of 

Laboratory Animals, and were approved by the Animal Care and Use Committees of the 

National Institute of Neurological Disorders and Stroke and Uniformed Services 

University of the Health Sciences. 

 

Surgery. Following 5 days of acclimatization, the rats were stereotaxically implanted 

with 5 cortical stainless steel screw electrodes under general anesthesia (ketamine 60 

mg/kg intraperitonally (i.p.), medetomidine 0.5 mg/kg i.p.), using the following 

coordinates, in mm, after Paxinos and Watson (1998): Two frontal electrodes AP = +1.5, 

ML = ±2.5 from bregma; two parietal electrodes AP = –5.0, ML = ±4 from bregma; and a 

single cerebellar reference electrode midline, AP = –1.0 from lambda. Each screw 

electrode with socket (E363/20; Plastics ONE Inc., Roanoke, VA) was placed in a plastic 
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pedestal (MS363; Plastics ONE Inc., Roanoke, VA) and attached to the skull with dental 

acrylic cement. Anesthesia was reversed by i.p. injection of 1 mg/kg atipamezol. 

 

Induction of status epilepticus. After 1 week of recovery, 25 rats were injected (i.p.) with 

KA to induce status epilepticus (“KA-SE rats”). Fifteen implanted rats were injected with 

corresponding amounts of saline at corresponding times as the KA-treated rats; this group 

of rats served as controls (“sham control rats”). Status epilepticus was induced following 

a modified titration protocol after Hellier et al. (1998). In order to maximize consistency 

of the status epilepticus expression between rats, EEG seizure activity rather than the 

behavioral seizure correlate was used to determine the necessity of additional KA 

injections. Rats were initially treated with 7.5 mg/kg KA (i.p.) dissolved in 0.1 M 

phosphate buffered normal saline (PBS; 5mg/ml), followed by additional 5 mg/kg doses 

every 60 min, until status epilepticus began, defined by 5 min of continuous generalized 

electrographic seizure activity (all four cortical electrodes involved; no breaks longer 

than 10 sec). Following this protocol, rats received between 12.5 and 32.5 mg/kg KA. 

Status epilepticus was allowed to continue without intervention for 180 min, and then 25–

30 mg/kg of diazepam was injected i.p. for termination of SE. Fluid was substituted with 

6 ml lactated Ringer’s solution injected subcutaneously (s.c.) after resolution of 

continuous convulsive seizures, usually less than 10 min after the diazepam injection. 

The sham control rats also received diazepam injections. For three days after SE, rats 

were offered fruits and soft chow. Additional lactated Ringer’s solution was administered 

by s.c. injection if dehydration was apparent. The wooden bedding was changed to iso-

PADsTM (Harlan Teklad, Madison, WI) to avoid aspiration in case of frequent seizures. 
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EEG recordings and analysis. Recordings were performed in freely moving rats using a 

commercially available Stellate® EEG monitoring system modified for the use in rodents 

(Respitech Medical Inc., Lancaster, PA; sampling rate, 200 Hz). EEG recordings were 

visually analyzed offline with filter settings set to 0.3 Hz low frequency filter, 60 Hz 

notch filter, and 70 Hz high frequency filter, using the Harmonie Viewer 6.1c from 

Stellate® (Montreal, Quebec, Canada). An electrographic seizure was defined as a period 

of EEG changes marked by an abrupt starting and ending, that included a minimum of 10 

sec of consistent, repetitive discharges at least double the amplitude of the background 

activity and not less than 1 Hz frequency. A single graphoelement was classified as sharp 

wave when it was clearly distinguishable from movement artifacts, had twice the 

amplitude of the background EEG, and was less than 200 ms in duration. Animals were 

recorded starting in the early morning, throughout SE, and continuing for at least two 

hours after the diazepam injection (7 to 9 hours total recording time per animal). The 

EEG seizure activity had stopped at the end of the recording period in 20 of the 25 KA-

treated rats, with four mortalities. 

Post-status epilepticus EEG monitoring for detection of spontaneous sharp waves 

and electrographic seizure activity was performed either for 24 hours, 6 to 9 days after 

status epileptics (n = 16 rats) or on days 6 and 7 for 8 hours per day (n = 5 rats). The non-

occurrence or occurrence of spontaneous sharp waves, spikes and seizures was noted 

during each recording period. 
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Amygdala slice electrophysiology. Coronal slices containing the amygdala were prepared 

from rats, at 7 to 10 days after status epilepticus. The rats were anesthetized with COR2R 

and then decapitated. The brain was rapidly removed and placed in ice-cold artificial 

cerebrospinal fluid (ACSF) composed of (in mM): 125 NaCl, 2.5 KCl, 2.0 CaCl2, 2.0 

MgCl2, 25 NaHCO3, 1.25 NaH2PO4, and 22 glucose, bubbled with 95% O2 and 5% CO2 

to maintain a pH of 7.4. A block containing the amygdala region was prepared, and 400 

µm slices were cut with a Vibratome (Series 1000; Technical Products International, St. 

Louis, MO). Slices were kept in a holding chamber containing oxygenated ACSF at room 

temperature, and recordings were initiated ≥1 hr after slice preparation. For whole-cell 

recordings, slices were transferred to a submersion-type recording chamber, where they 

were continuously perfused with oxygenated ACSF, at a rate of 3–4 ml/min. Neurons 

were visualized with an upright microscope (Nikon Eclipse E600fn; Nikon, Tokyo, 

Japan) using Nomarski-type differential interference optics through a 60× water 

immersion objective. All experiments were performed at room temperature (28 °C). 

Tight-seal (>1 GΩ) whole-cell recordings were obtained from the cell body of pyramidal-

shaped neurons in the BLA region. Patch electrodes were fabricated from borosilicate 

glass and had a resistance of 1.5–5.0 MΩ when filled with a solution containing (in mM): 

135 Cs-gluconate, 10 MgCl2, 0.1 CaCl2, 1 EGTA, 10 HEPES, 2 Na-ATP, 0.2 Na3GTP, 

pH 7.3 (285–290 mOsm). Neurons were voltage-clamped using an Axopatch 200B 

amplifier (Axon Instruments, Foster City, CA). IPSCs were pharmacologically isolated 

and recorded at a –70 mV holding potential. Access resistance (5–24 MΩ) was regularly 

monitored during recordings, and cells were rejected if it changed by >15% during the 

experiment. The signals were filtered at 2 kHz, digitized (Digidata 1322A; Axon 
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Instruments), and stored on a computer using pClamp9 software (Axon Instruments). The 

peak amplitude, 10–90% rise time, and decay time constant of IPSCs were analyzed off-

line using pClamp9 software and the Mini Analysis Program (Synaptosoft, Inc., Leonia, 

NJ). Miniature IPSCs (mIPSCs) were analyzed off-line using the Mini Analysis Program 

and detected by manually setting the mIPSC threshold (~1.5 times the baseline noise 

amplitude) after visual inspection. 

Extracellular recordings of evoked and spontaneous field potentials were obtained 

from the BLA, while stimulus pulses were applied to the external capsule. Recording 

electrodes were filled with ACSF, and had a resistance of 4 to 7 MΩ. 

 

Western blotting. Six rats treated with KA as described above to induce status epilepticus 

and three sham control rats were used for measuring the protein expression levels of the 

GluR5 kainate receptor subunit and the α1 subunit of the GABAA receptor in the BLA. 

The CA3 subfield of the hippocampus and the ventral posteromedial and ventral 

posterolateral (VPM/VPL) thalamic nuclei were also included in the Western blot 

analysis for comparison; previous studies have found moderate and weak expression of 

the GluR5 subunit in the CA3 area and the VPM/VPL nuclei, respectively (Li et al., 

2001; Braga et al., 2003). Following EEG monitoring on the sixth to ninth day after status 

epilepticus, rats were anesthetized with CO2 and then decapitated. Discrete brain regions 

were microdissected from individual 800 µm-thick brain sections cut with a Vibratome 

(Technical Products International). The tissues were sonicated in lysis buffer (1% NP-40, 

20 mM Tris, pH 8.0, 137 nM NaCl, 10% Glycerol, Tyr & Ser/Thr Phosphatase Inhibitor 

Cocktails; Upstate, Temecula, CA). After removal of cellular debris by centrifugation, 
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protein levels in the lysates were measured by the Bradford Coomassie Blue colorimetric 

assay (Bio-Rad Laboratories, Hercules, CA) and equalized accordingly. Aliquots (60 µg) 

were boiled for 5 min in the presence of loading buffer (NuPAGE LDS Sample Buffer 

(4x); Invitrogen, Carlsbad, CA), then placed on ice for 1 min. Each brain region was 

loaded in triplicate and proteins were separated on a 7.5% SDS-PAGE under reducing 

conditions using the Bio-Rad Mini-Protean3 cell system. Proteins were transferred to 

nitrocellulose membranes (0.45µm; Invitrogen). After blocking with 5% nonfat dry milk 

in Tris-buffered saline containing 0.1% Tween 20 (TBS-T) at room temperature for 1 

hour, blots were incubated overnight at 4 °C with specific primary antibodies: anti-

GluR5, 1:500 (Tocris Bioscience, Ellisville, Missouri), and anti-GABAA α1 (1:200, 

Chemicon), prepared in 5% bovine serum albumin (BSA) in TBS-T. After washing in 

TBS-T, membranes were incubated with peroxidase-conjugated goat anti-rabbit 

(1:10,000; Jackson Immuno Research, West Grove, PA) prepared in 5% BSA in TBS-T 

for 2 hours, at room temperature. Anti-β-actin (1:500; Cell Signaling Technology, 

Danvers, MA) was used as a loading control in all experiments. After washing in TBS-T, 

blots were developed using enhanced chemilluminescence detection according to the 

manufacture’s recommendation (Pierce, Rockford, IL) and exposed to BioMax MR Film 

(Kodak Biomax, Rochester, NY) under non-saturating conditions. The blots were 

stripped with Restore Western blot Stripping Buffer (Pierce) and then incubated with 

subsequent antibodies (see above). Absorbance values of bands for GluR5 and GABAA 

α1 were analyzed by densitometry using Image J analysis systems (NIH, Bethesda, MD), 

and normalized relative to the β-actin absorbance value. 
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Histological studies.  Five rats treated with KA as described above to induce status 

epilepticus and five sham control rats were used for histological studies of the BLA. Six 

to 9 days after the day of status epilepticus, rats were EEG monitored for 24 hours. On 

the day after monitoring, the animals were deeply anesthetized using ketamine (60 mg/kg 

i.p.) and medetomidine (0.5 mg/kg i.p.) and transcardially perfused with PBS (100 mL) 

followed by 4% paraformaldehyde (250 mL). The brains were removed and post-fixed 

overnight at 4º C, then transferred to a solution of 30% sucrose in PBS for 72 hours, and 

frozen with dry ice before storage at –80º C until sectioning.  A 1-in-6 series of sections 

containing the rostro-caudal extent of the BLA was cut at 40 µm on a sliding microtome. 

One series of sections was mounted on slides (Superfrost Plus; Daigger, Vernon Hills, 

IL) in PBS for Nissl staining with cresyl violet. An adjacent series of sections was also 

mounted on slides for Fluoro-Jade C staining. The remaining series of sections were 

placed in a cryoprotectant solution (30% ethylene glycol and 30% glycerol in 0.05 M 

sodium phosphate buffer) and stored at –20º C until processing for 

immunohistochemistry. 

 

Fluoro-Jade C staining. Fluoro-Jade C (Histo-Chem, Jefferson, AK) was used to identify 

dying neurons in the BLA, at 7–10 days after SE. Mounted sections were air-dried 

overnight, then immersed in a solution of 1% sodium hydroxide in 80% ethanol for 5 

min. The slides were then rinsed for 2 min in 70% ethanol, 2 min in dH20, and incubated 

in 0.06% potassium permanganate solution for 10 min. After a 2 min rinse in dHR2R0, the 

slides were transferred a 0.0001% solution of Fluoro-Jade C dissolved in 0.1% acetic acid 
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for 10 min. Following three 1-min rinses in dH20, the slides were dried on a slide 

warmer, cleared in xylene for at least 1 min and coverslipped with DPX (Sigma). 

 

GAD67 immunohistochemistry. To stain GAD67-immunoreactive neurons, a l-in-6 series 

of free-floating sections was collected from the cryoprotectant solution, washed three 

times for 5 min each in 0.1 M phosphate buffered saline (PBS), then incubated in a 

blocking solution containing 10% normal goat serum (NGS; Chemicon), and 0.5% Triton 

X-100 in PBS for one hour at room temperature.  The sections were then incubated with 

mouse anti-GAD67 serum (1:1000, MAB5406; Chemicon), 5% NGS, 0.3% Triton X-

100, and 1% bovine serum albumin, overnight at 4º C.  After rinsing three times in 0.1% 

Triton X-100 in PBS, the sections were incubated with Cy3-conjugated goat anti-mouse 

antibody (1:1000; Jackson ImmoResearch) and 0.0001% DAPI (Sigma, St. Louis, MO) 

in PBS for one hour at room temperature.  After a final rinse in PBS, sections were 

mounted on slides, air dried for 30 min, then coverslipped with ProLong Gold antifade 

reagent (Invitrogen). 

 

Stereological quantification. Design-based stereology (see Appendix for a description of 

stereological methodology) was used to quantify total number of neurons on Nissl-

stained sections and total number of inhibitory neurons on GAD67-stained sections in the 

BLA of KA-SE and sham control rats.  Sections were viewed with a Zeiss Axioplan 2ie 

(Oberkochen, Germany) fluorescent microscope with a motorized stage, interfaced with a 

computer running StereoInvestigator 7.5 (MicroBrightField, Williston, VT). The BLA 

was identified on slide-mounted sections and delineated under a 2.5× objective, based on 
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the atlas of Paxinos and Watson (1998). Estimated totals were determined using the 

optional fractionator probe, and all sampling was done under a 63× oil immersion 

objective. 

For Nissl-stained neurons in the BLA of both KA-SE and sham control rats, a 1-

in-6 series of sections was analyzed (on average, 6 sections). The counting frame was 35 

× 35 µm, the counting grid was 190 × 190 µm, and the disector height was 12 µm. Nuclei 

were counted when the top of the nucleus came into focus within the disector which was 

placed 2 µm below the section surface. Section thickness was measured at every counting 

site, and the average mounted section thickness was 19 µm. An average of 288 Nissl-

stained neurons per rat was counted. 

For GAD67-stained neurons in BLA, of both KA-SE and sham control rats, a 1-

in-6 series of sections was analyzed (on average, 6 sections), the counting frame was 60 × 

60 µm. The counting grid was 100 × 100 µm for KA-SE rats and 110 × 110 µm for sham 

control rats. The disector height was 12 µm (n = 1), 16 µm (n = 5), or 20 µm (n = 4), 

depending on extent of antibody penetration in the tissue. Cells were counted if they 

came into focus within the disector, which was placed 2 µm below the section surface. 

Section thickness was measured at every fifth counting site, and the average mounted 

section thickness was 40 µm. An average of 207 GAD67-stained neurons per rat was 

counted. The coefficient of error (CE) for the estimated total of Nissl-stained and 

GAD67-stained neurons in the BLA was calculated using both the Gunderson (m = 1; 

Gundersen et al., 1999) and Schmitz-Hof (2nd Estimation; Schmitz and Hof, 2000) 

equations. 
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Quantification of Fluoro-Jade C. Tracings of the BLA from an adjacent series of Nissl-

stained sections were superimposed on the sections stained with Fluoro-Jade C. Fluoro-

Jade C positive cells were counted at 20, and recorded as number of cells per section 

from, on average, 6 sections containing the BLA of sham control rats and KA-SE rats. 

 

Statistical analysis. All statistical values are presented as mean ± SEM. Results from 

sham control and KA-SE groups were compared using the unpaired Student’s t test; p < 

0.05 was considered statistically significant. Sample sizes (n) refer to the number of rats, 

except for the electrophysiology results where “n” refers to the number of slices. 

 

Drugs. The following drugs were used: kainic acid (Tocris Cookson, Ballwin, MO), 

diazepam (Hospira Inc., IL), D-APV (Tocris; an NMDA receptor antagonist), (+)-(2S)-

5,5-dimethyl-2-morpholineacetic acid (SCH50911; Tocris; a GABAB receptor 

antagonist), ATPA (Sigma; a GluR5 agonist; see Clarke et al., 1997), GYKI 52466 

(Tocris; an AMPA receptor antagonist), and TTX (Sigma; a sodium channel blocker). 

 

Results 

Status epilepticus 

Status epilepticus by EEG and behavioral criteria occurred in 24 out of 25 rats treated 

with KA. One rat experienced only focal seizures with unilateral forelimb clonus and was 

not studied. None of the saline-treated sham control rats displayed EEG or behavioral 

seizures during the observation period (n=19). Diazepam (25–30 mg/kg) was 

administered 180 min after the beginning of status epilepticus in the KA-treated rats to 
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terminate the behavioral and EEG seizure activity. The mean cumulative duration of EEG 

seizure activity in the KA treated rats was 257.1 ± 13.9 min (n=23). One rat died during 

status epilepticus, and three rats died after diazepam treatment. 

 

EEG indicators of epileptogenesis 

In the post-status epilepticus model as conducted according to the protocol we used, a 

high proportion of animals eventually develop spontaneous motor seizures (Hellier et al., 

1998). However, to separate the effects of chronic seizures from the changes related to 

epileptogenesis, we studied animals in the latent period before the development of overt 

behavioral seizures. Thus, all experiments were conducted with animals 6 to 10 days after 

status epilepticus, at a time that they had recovered from the initial insult but before the 

occurrence of spontaneous motor seizures. These animals had clear evidence of 

epileptogenesis based on the presence of abnormal epileptiform discharges in the EEG. 

Thus, in all rats that survived KA-induced status epilepticus, we detected spontaneous 

sharp waves and/or spike wave complexes in recordings carried out 6 to 9 days after the 

episode of status epilepticus (Fig. 1A, B) (n=20). Spontaneous EEG seizures and/or 

episodes of periodic generalized epileptic discharges (Fig. 1B, C) occurred in 55 % of the 

rats (n=11). 

 

Alterations in GABAA receptor-mediated IPSCs 

To investigate alterations in GABAergic transmission in the rat BLA, 7–12 days after SE, 

we recorded action potential-dependent, spontaneous IPSCs (sIPSCs) and miniature 

IPSCs (mIPSCs) from the somata of BLA pyramidal-shaped neurons of KA-SE rats and 
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sham control rats. sIPSCs were recorded at a holding potential of  −70 mV, and in the 

presence of D-APV (50 μM), GYKI 52466 (50 μM), and SCH50911 (20 μM) to block 

NMDA, AMPA, and GABAB receptors, respectively. The mean frequency of sIPSCs was 

1.9 ± 0.7 Hz (n = 23) in sham control rats, and 1.1 ± 0.4 Hz in KA-SE rats, 41.2 ± 5.1 % 

lower than in the sham group (n = 21; p < 0.01; Fig. 2). The mean amplitude of sIPSCs in 

KA-SE rats was also reduced to 71.0 ± 4.8% of the control value (n = 21; p < 0.01; Fig. 

2).  There were no significant differences between KA-SE rats and sham control rats in 

the rise time and the decay time constant of the sIPSCs. These results suggest a reduced 

inhibitory tone of BLA pyramidal cells on days 7 to 10 after KA-SE. 

To determine whether the reduction of sIPSCs was associated with a decreased 

responsiveness of postsynaptic GABAA receptors we recorded action potential-

independent, mIPSCs from the soma of BLA pyramidal-shaped neurons of KA-SE rats 

and sham control rats.  mIPSCs were recorded at a holding potential of −70 mV, and in 

the presence of D-APV (50 μM), SCH50911 (20 μM), and GYKI 52466 (50 μM) and 

TTX (1 µM). The mean frequency of mIPSCs was 1.2 ± 0.4Hz (n = 14) in sham control 

rats and 0.5 ± 0.2 Hz in KA-SE rats (55.7 ± 3.9 % lower than the sham control group; n = 

15, p < 0.05; Fig. 3). There was no significant difference in mIPSC amplitude, between 

sham control and KA-SE rats (Fig. 3). Thus, the reduced frequency and amplitude of 

sIPSCs (Fig. 2) did not involve a decreased responsiveness of postsynaptic GABAA 

receptors; the remaining possibilities are a significant interneuronal loss, reduced 

excitation of interneurons, and/or reduction in the probability of GABA release from 

GABAergic terminals. 
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Alterations in the GluR5 kainate receptor (GluR5KR)-mediated modulation of 

GABAergic transmission 

An important mechanism regulating GABAergic synaptic transmission in the BLA 

operates via activation of GluR5KRs (Braga et al., 2003; Braga et al., 2004; Aroniadou-

Anderjaska et al., 2007). The amygdala displays a high expression of the GluR5 subunit 

(Bettler et al., 1990; Li et al., 2001; Braga et al., 2003), and we have shown previously 

that GluR5KRs in the BLA are present on both postsynaptic (somatodendritic) and 

presynaptic sites of GABAergic interneurons. Activation of somatodendritic GluR5KRs 

enhances GABA release via depolarization of interneurons (Braga et al., 2003). 

Presynaptic GluR5KRs on GABAergic terminals increase the probability of GABA 

release when activated weakly, but have the opposite effect when the agonist 

concentration increases (Braga et al., 2003). Furthermore, there is evidence that 

GluR5KRs are significantly involved in epilepsy (Smolders et al., 2002; Gryder and 

Rogawski, 2003; Rogawski et al., 2003; Kaminski et al., 2004), and there are alterations 

in both the function of GluR5KRs (Palma et al., 2002) and the expression of the GluR5 

subunit in MTLE patients (Mathern et al., 1998; Kortenbruck et al., 2001) and epileptic 

rats (Ullal et al., 2005).  For these reasons, in the present study we examined if the 

reduced spontaneous inhibitory activity in the BLA (Fig. 2 and 3) was associated with 

alterations in the function of GluR5KRs or the expression level of the GluR5 subunit. 

Bath application of the GluR5 agonist ATPA, at 300 nM, produced a 149 ± 31 % 

increase in the frequency of sIPSCs recorded from BLA pyramidal cells (n = 11) of sham 

control rats, while 1 µM ATPA further increased the sIPSC frequency to 419 ± 42 % 

from baseline (n = 11; Fig. 4). In the KA-SE rats, 300 nM ATPA produced only a 48 ± 22 
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% increase in sIPSC frequency from baseline (n = 10), and 1 µM ATPA increased sIPSC 

frequency to 218 ± 19 % from baseline (n = 10; Fig. 4). Thus, the enhancement in the 

frequency of sIPSCs in the BLA, produced by activation of GluR5KRs was significantly 

reduced in KA-SE rats compared to sham control rats, at agonist concentrations of either 

300 nM (p < 0.01) or 1 µM (p < 0.01). As these effects of ATPA were probably produced 

by a depolarizing action on somatodendritic GluR5KRs of GABAergic interneurons, 

these results suggest that either the function of postsynaptic GluR5KRs present on 

GABAergic interneurons is impaired in the KA-SE rats, or the number of these receptors 

is reduced, which could be due to loss of GABAergic interneurons bearing GluR5KRs, 

reduced expression of the GluR5 subunit, or other mechanisms of downregulation. 

When mIPSCs were recorded from BLA pyramidal cells, in the presence of TTX, 

300 nM ATPA produced a 42.8 ± 7.2% facilitation in the mIPSC frequency (n = 9; Fig. 

5A) in sham control rats, with no change in the amplitude or decay time constant of the 

mIPSCs.  In contrast, in the KA-SE rats, 300 nM ATPA failed to produce a significant 

effect on mIPSCs (n = 9; Fig. 5A). Application of 1 µM ATPA produced a 31.6 ± 5.9 % 

reduction in the mIPSC frequency (n = 9; Fig. 5) in sham control rats, with no change in 

the amplitude or decay time constant of the mIPSCs, but had no significant effect on 

mIPSCs recorded from the KA-SE rats (n = 9; Fig. 5). These results suggest that 

presynaptic GluR5KRs in the KA-SE group are either downregulated or functionally 

impaired, or that there is a significant loss of GABAergic interneurons bearing 

presynaptic GluR5KRs. 

Comparisons of the effects of ATPA in the BLA of slices from sham control rats 

and KA-SE rats in extracellular field potential recordings also indicated that GluR5KRs 
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were functionally impaired or their level was reduced in the KA-SE group. Thus, 

perfusion of 1 µM ATPA for 30 min reduced the amplitude of the field potential evoked 

in the BLA by stimulation of the external capsule to 80.0 ± 3.8 % of the baseline 

amplitude in sham control rat slices (n = 10), but did not cause a reduction in recordings 

from KA-SE rat slices (99.5 ± 3.5 % of the baseline amplitude; n = 12; Fig. 6). The 

reduction of the BLA field potentials by 1 µM ATPA in the sham control rats was 

reversible in all slices (not shown). The reduction may relate to the known effect of 

ATPA to enhance GABA release, which reduces the overall neuronal excitability and 

probability of action potential generation so that the population spike is reduced, or it 

may relate to presynaptic inhibition of glutamate release, which would also reduce 

excitability and action potential firing. Such reduction in the evoked field potentials by 

application of low concentrations of ATPA is also seen in the hippocampus (Vignes et 

al., 1998). 

At 10 µM, ATPA induces epileptiform activity in the BLA (Rogawski et al., 

2003; Aroniadou-Anderjaska et al., 2008), which could be due, at least in part, to 

presynaptic inhibition of GABA release (see the effect of 1 µM ATPA in Fig. 5 and 10 

µM in Braga et al., 2003) and also to activation of GluR5KRs on BLA pyramidal cells 

(Gryder and Rogawski, 2003). When spontaneous activity was recorded in response to a 

10 µM ATPA challenge, slices from sham control rats (n = 10) exhibited epileptiform 

bursting at higher frequency than did those from KA-SE rats (n = 12; Fig. 7), further 

supporting impairment of GluR5KR function. 

Next, we used Western blot analysis to compare the expression level of the GluR5 

protein in the BLA of KA-SE and sham control rats. We found that expression of the 
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GluR5 subunit in the BLA of KA-SE rats was reduced to 73.0 ± 4.6% of the level in 

sham control rats (Fig. 8; p < 0.006). For comparison, we also examined the GluR5 levels 

in two other brain regions. In the CA3 hippocampal area, there was no significant 

difference in the expression of the GluR5 subunit between sham control and KA-SE rats, 

while a significant elevation of the GluR5 protein was observed in the VPM/VPL 

thalamic nuclei of KA-SE rats (228.0 ± 24.4%; Fig. 8; p <  0.02). 

Taken together, the results from electrophysiology and Western blot analysis 

indicate that the functional activity and expression of GluR5KRs is impaired in the BLA 

of KA-SE rats. Considering that GluR5KRs are activated by ambient concentrations of 

extracellular glutamate to facilitate GABA-mediated neurotransmission (Braga et al., 

2003), the reduced activity of GluR5KRs in the KA-SE rats could contribute to the 

diminished frequency and amplitude of sIPSCs (Fig. 2) and the frequency of mIPSCs 

(Fig. 3) in non-ATPA stimulated slices from these animals. 

 

Neuronal loss in the BLA 

Our next step in investigating the alterations in the BLA of the KA-SE rats that may have 

contributed to the reduced inhibitory tone of pyramidal cells (Figs. 2 and 3) was to 

determine the extent of neuronal loss, and particularly the loss of GABAergic 

interneurons. To this end, we counted the total number of neurons and total number of 

GABAergic neurons in the BLA of the sham control and the KA-SE groups. The total 

number of neurons in the BLA of sham control rats (n = 5), estimated by stereologically 

counting Nissl-stained neurons, was 85,877 ± 2,913 (Table 1; Fig. 9).  In the KA-SE rats 

(n = 5), the total number of neurons was 72,904 ± 1,261, a 15% reduction compared to 
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sham control rats (p < 0.004). The total number of GABAergic neurons in the BLA was 

estimated by counting GAD67-immunoreactive cells. GAD67 is the higher molecular 

weight (67 kD) isoform of glutamate decarboxylase (GAD), the enzyme that synthesizes 

GABA (Erlander and Tobin, 1991), and is predominantly localized in cell bodies of 

GABAergic neurons (Esclapez et al., 1994; Soghomonian and Martin, 1998). The total 

number of GABAergic neurons in the BLA of sham control rats was 11,685 ± 864 (Table 

1, Fig. 9). In KA-SE rats, the total number of GABAergic neurons was 6,718 ± 537, a 

43% reduction compared to controls (p < 0.002). Thus, in the BLA of sham control rats, 

GABAergic interneurons represent 13.7 ± 1.4% of the total population of neurons, but 

after KA-SE this is significantly reduced to 9.2 ± 0.7% (Fig. 9; p < 0.02), indicating that 

GABAergic neurons in the BLA are more vulnerable to KA-SE induced injury than 

principal cells. 

 Fluoro-Jade-C was used to determine the extent to which neurons are still 

degenerating in the BLA, 7–10 days after KA-SE. Whereas no Fluoro-Jade-C positive 

staining was found in the BLA of sham control rats (n = 5), all KA-SE rats (n = 5) 

demonstrated positive staining in the BLA (5.7 ± 2.1 FJ+ cells/section; Fig. 9; p < 0.03). 

In addition, positive staining was found, to a greater extent, in other amygdala nuclei, 

including the medial, lateral, posterior cortical, and central amygdala nuclei, as well as in 

other brain regions, such as the hilus, CA1, and CA3 subfields of the hippocampus, the 

piriform cortex, and the endopiriform cortex, in all KA-SE rats, but not in the control 

sham rats. These results demonstrate that neurodegeneration was still occurring in the 

BLA and other brain areas at 7 to 10 days after KA-induced status epilepticus. 
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GABAA 1 subunit expression 

Our findings that the amplitude of mIPSCs is not altered in the BLA of the KA-SE rats 

(Fig. 3) suggest that the function and number of GABAA receptors on BLA pyramidal 

cells of the KA-SE rats was not altered post-status epilepticus. Other studies, however, 

have reported status epilepticus-induced alterations in the expression of different GABAA 

receptor subunits or GABAA receptor binding in different brain regions, including the 

amygdala (Gilby et al., 2005; Rocha et al., 2007), the hippocampus (Gibbs et al., 1997; 

Schwarzer et al., 1997; Tsunashima et al., 1997; Brooks-Kayal et al., 1998; Fritschy et 

al., 1999; Gilby et al., 2005; Raol et al., 2006), and thalamic nuclei (Rocha et al., 2007). 

To determine whether in the BLA of the KA-SE rats there were alterations in GABAA 

receptors that were not detectable with electrophysiological techniques, we measured the 

levels of the α1 GABAA receptor subunit (GABAA α1). GABAA α1 protein levels were 

significantly elevated in the BLA of the KA-SE rats to 257 ± 19% of the value in the 

sham control group (Fig. 8; p < 0.003). GABAA α1 levels were also increased in the CA3 

subfield of the hippocampus (195 ±13% of shams; Fig. 8; p < 0.003), as well as in the 

VPM/VPL thalamic nuclei (157 ± 12% of shams; Fig. 8; p < 0.04) of the KA-SE rats. 

Given the results from the mIPSC recordings (Fig. 3), we have no evidence that the 

increased expression of GABAA α1 subunits influences the density or function of 

postsynaptic GABAA receptors on pyramidal neurons, at least at this stage of 

epileptogenesis. 
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Discussion 

Kainic acid-induced status epilepticus has previously been shown to result in extensive 

neuronal damage in the amygdala that is particularly severe in the BLA (Pitkänen et al., 

1998; Covolan and Mello, 2000), including a loss of GABA neurons (Tunnanen et al., 

1996), but there is little information on the functional consequences of the neuronal loss 

on the activity of amygdala circuits. We now show that there is a profound reduction in 

GABA-mediated inhibitory activity in the BLA as assessed by recordings of spontaneous 

and miniature IPSCs. Our results confirm that there is damage to the BLA as 

demonstrated by an overall reduction in neuronal counts (15%), with a particularly 

dramatic loss of GABAergic neurons (43%), indicating that these neurons are selectively 

vulnerable. Previously, Sperk et al. (1983) observed that GAD enzyme activity was 

reduced 33% in amygdala/pyriform cortex of rats 9 days after kainate-induced status 

epilepticus, in good agreement with our estimates of the number of cells lost. We have 

also found that the remaining GABA neurons exhibit impaired ability to carry out 

GABA-mediated synaptic inhibition. This is manifest as defective modulation by 

GluR5KRs, a key mechanism regulating synaptic inhibition in the nucleus (Braga et al., 

2004; Aroniadou-Anderjaska et al., 2007). Together, the drop-out of GABA neurons 

along with the impairment in the function of the surviving GABA neurons leads to 

reduced synaptic inhibition, which is likely to contribute to epileptic hyperexcitability 

manifest as epileptiform discharges and frank electrographic seizures (Fig. 1). 
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Reduced inhibitory tone in the BLA 

The frequency and amplitude of action potential-dependent sIPSCs was reduced in BLA 

pyramidal neurons from KA-SE rats. In contrast, mIPSC amplitude was not reduced and 

the kinetic parameters were unaltered, although we did observe a reduction in mIPSC 

frequency. The pattern of effects is compatible with a loss of inhibitory GABA neurons 

and the defective function of GluR5KRs (as discussed in the next section). Although 

altered postsynaptic GABAA receptors have been observed in epileptic brain (McDonald 

et al., 1991; Henry et al., 1993; Rocha et al., 2007), the unaltered mIPSC amplitude and 

kinetics indicate that any changes in GABAA receptors were not functionally relevant, at 

least under our experimental conditions. In this regard, it is noteworthy that there are 

many reports of altered GABAA receptor subunit expression in brain regions including 

the amygdala (Gilby et al., 2005; Rocha et al., 2007) following status epilepticus. We 

also found an increase in 1 GABAA receptor subunit expression. 

Impairments in GABA-mediated inhibitory transmission have been reported 

previously in the amygdala from epileptic animals (Gean et al., 1989; Smith and Dudek, 

1997; Mangan et al., 2000; Benini and Avoli, 2006; for a review see Aroniadou-

Anderjaska et al., 2008). In the BLA from rats with chronic limbic epilepsy (due to 

continuous hippocampal stimulation) characterized by spontaneous seizures and also in 

hippocampal kindled rats that had experienced thousands of seizures, Mangan et al. 

(2000) observed that spontaneous IPSPs in BLA neurons are absent. Our present results 

demonstrate that the inhibitory tone in the BLA network is reduced in the latent period, 

before the onset of spontaneous seizures. 



 48 

The reduced inhibitory tone could contribute to epileptic hyperexcitability in the 

BLA and could be a factor in the occurrence of spontaneous seizures when the disease 

evolves from the latent phase to the epileptic chronic phase. As evidence that the BLA 

becomes hyperexcitable in association with the status epilepticus model, it has been show 

that kainate-treated epileptic rats manifest abnormal, repetitive population-spike 

responses to orthodromic stimulation (Smith and Dudek, 1997). This hyperexcitability 

may contribute to the seizure susceptibility of KA-SE rats. It is noteworthy that our 

recordings were carried out prior to the onset of overt spontaneous motor seizures. This 

raises the possibility that the early reduction of inhibitory activity could contribute to the 

process of epileptogenesis that leads eventually to spontaneous seizures, perhaps by 

permitting further excitotoxic damage to the amygdala (Nairismagi et al., 2004). In fact, 

we did observe ongoing neuronal degeneration, although the cause is not known. 

 

Impaired GluR5KR-mediated modulation of GABA release 

Unlike other ionotropic glutamate receptor subunits, GluR5KR subunits have a relatively 

restricted distribution in the central nervous system, but are highly expressed in the BLA 

(Bettler et al., 1990; Li et al., 2001; Braga et al., 2003). We have previously shown that 

postsynaptic GluR5KRs on somatodendritic sites of BLA interneurons enhance GABA 

release by depolarizing interneurons. Presynaptic GluR5KRs on GABAergic terminals 

also facilitate GABA release when activated by low concentrations of an agonist, but 

inhibit GABA release when activated by higher agonist concentrations (≥1 µM ATPA; 

Braga et al., 2003). GluR5KRs are also present on principal neurons where they have a 

depolarizing action (Gryder and Rogawski, 2003); it is not known whether there are 
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presynaptic GluR5KRs on these neurons that affect glutamate release. The net effect of 

GluR5KR activation on the BLA network is to reduce excitability when agonist 

concentrations are low, while epileptiform activity is induced with high agonist 

concentrations due to direct excitation of principal neurons and reduced GABA release 

from interneurons. In the present study, the reduced enhancement of sIPSCs by ATPA in 

the KA-SE group, and the near absence of an ATPA effect on mIPSCs indicates that 

there is impaired function of GluR5KRs on surviving GABA neurons or, alternatively, 

that GluR5KR-bearing GABA neurons are preferentially lost. Additional evidence of 

defective GluR5KR receptor function comes from recordings of field potentials where, 

under ordinary condition, 1 M ATPA causes a reduction in the field potential amplitude; 

this action was absent in the KA-SE group. Finally, 10 M ATPA caused a reduced 

frequency of epileptiform bursting in the BLA in slices from KA-SE rats, which also may 

reflect impaired GluR5KR functional activity. 

 

Loss of GABAergic interneurons 

In agreement with prior studies (Tuunanen et al., 1996, 1999), we observed a substantial 

reduction in the number of neurons in the BLA after kainate-induced status epilepticus. 

However, the magnitude of the reduction was less than in these previous studies most 

likely because the duration of status epilepticus in our experiments was shorter. It is well 

recognized that the severity of neuronal damage in status epilepticus models is dependent 

on the duration of seizure activity (Lemos and Cavalheiro, 1995; Gorter et al., 2003). In 

the present study, we used diazepam to terminate seizure activity within 3 hours after 

onset whereas Tuunanen et al. (1996) recorded seizure activity lasting on average 13 
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hours. As observed in animal models, it is interesting to note that loss of neurons in the 

BLA is also a common pathological feature in human MTLE (Cendes et al., 1993; 

Hudson et al., 1993; Wolf et al., 1997; Pitkänen et al., 1998; Guerreiro et al., 1999). 

The damage to GABA neurons in the present study was significantly greater than 

that of principal neurons, suggesting a higher vulnerability of GABA neurons to status 

epilepticus-induced injury. It has been speculated that certain interneuron populations are 

vulnerable to seizure-induced damage because of a low capacity to buffer calcium by 

calcium binding proteins (Sloviter, 1989; Scharfman and Schwartzkroin, 1989); however 

no clear relationship has been established between calcium binding proteins and 

vulnerability to damage by prolonged seizures (Freund et al., 1992). A high susceptibility 

of somatostatin-containing interneurons to status epilepticus-induced damage has been 

reported in the hippocampus (Sloviter, 1987; Buckmaster and Dudek, 1997; Sun et al., 

2007), and has been associated with the high level of a tyrosine phosphatase present in 

these neurons, which blocks a latent neuroprotective response initiated by the 

ERK/MAPK signaling pathway (Choi et al., 2007). A similar mechanism could account 

for the vulnerability of interneurons in the BLA (Tuunanen et al., 1996; 1997). However, 

since only 11–18% of BLA GABAergic neurons contain somatostatin (McDonald and 

Pearson, 1989), other types of GABA neurons are probably also affected. 

 

Functional Implications 

In hyperexcitable, epileptic neuronal circuits, regardless of the underlying mechanisms 

that have led to hyperexcitability, the characteristic end result is a derangement in the 

balance between excitatory and inhibitory activity. Although alterations in excitatory 
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glutamatergic transmission can underlie this imbalance, impaired GABA-mediated 

inhibition is most often also involved (Coulter, 1999; El-Hassar et al., 2007). In the post-

status epilepticus BLA, there is clearly impairment of GABAergic inhibition. It remains 

to be determined whether there are also changes in excitatory synaptic function in this 

brain structure. 

 Alterations in GluR5KRs play a key role in the impairment of GABAergic 

inhibition. When extracellular glutamate levels rise, as during epileptic activity, 

GluR5KRs contribute to hyperexcitability by depolarizing principal neurons and 

depressing interneuron-mediated GABAergic inhibition. Accordingly, studies in brain 

slices and with GluR5 knockout mice have confirmed that GluR5KR activation can 

trigger epileptiform discharges and seizures, and GluR5 antagonists block epileptiform 

activity in amygdala slices (Rogawski et al., 2003; Fritsch et al., 2006; Apland et al., 

2007) as well as limbic seizures in vivo (Smolders et al., 2002). In the post-status-

epilepticus BLA, since GABAergic inhibition is already markedly impaired due to a 

selective loss of GABA neurons, defective GluR5 function is not expected to protect 

against seizures, especially since excitation can be expressed through other ionotropic 

glutamate receptors. However, under ordinary conditions when the BLA network is 

relatively quiet and extracellular levels of glutamate are low, GluR5KRs contribute to 

maintaining GABA-mediated inhibitory tone by facilitating GABA release from 

interneurons via both postsynaptic and presynaptic mechanisms (Braga et al., 2003; 

Aroniadou-Anderjaska et al., 2007). Therefore, hyperexcitability in the post-status-

epilepticus BLA may be promoted by a reduction in this inhibitory tone due to impaired 

GluR5KR mechanisms. During the latent period, this hyperexcitability is expressed as 
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epileptiform activity, but not motor seizures. However, in the subsequent chronic period, 

seizure discharges in the BLA, which can spread to other limbic structures via its 

extensive projections (Amaral et al., 1992; Pitkänen, 2000), may contribute to the 

propensity for spontaneous behavioral seizures. 
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Table 1. Stereological estimation of total Nissl-stained and GAD67-positive 

neurons in the BLA of sham control rats and KA-SE rats 

 Sham 
Control 
 (n = 5) 

KA-SE 
(n = 5) 

p value 
(t test) 

% Neurons 
Remaining 

Nissl-stained     

Mean 85,877 72,904 

SEM 2,913 1,261 

Mean Gundersen CE (m=1) .060 .062 

Mean Schmitz-Hof CE (2nd est) .056 .061 

<.004 84.9 

GAD67+     

Mean 11,685 6,718 

SEM 864 537 

Mean Gundersen CE (m = 1) .066 .076 

Mean Schmitz-Hof CE (2nd est) .065 .076 

<.002 57.4 

 

Means are bilateral values; n indicates number or rats per group. SEM, standard 

error of the mean; CE, coefficient of error as calculated by Gundersen et al. 

(1999) and Schmitz and Hof (2000). Glutamate decarobxylase (GAD67) 

positive neurons were labeled using GAD67 immunohistochemistry. 
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Figure 1. EEG traces recorded from the cortex of rats 6 days after KA-SE. (a) single 

sharp wave, (b) spike-wave complexes, (c) periodic generalized epileptic discharges, and 

(d) seizures. Trace in (a) was recorded from a left frontal cortical screw electrode. Traces 

in (b), (c), and (d) were recorded (top to bottom) from a left frontal, right frontal, left 

parietal, and right parietal cortical screw electrode. 



 67 

 

 

Figure 2. The frequency and amplitude of spontaneous IPSCs (sIPSCs) in BLA neurons 

are reduced on days 7 to 10 after KA-SE. sIPSCs were recorded from pyramidal-shaped 

neurons in the presence of D-APV (50 μM), SCH50911 (20 μM), and GYKI 52466 (50 

μM), at a holding potential of −70 mV. The frequency and the amplitude of the sIPSCs 

were reduced in a neuron from a KA-SE rat (b) compared to one from a sham control (a). 

The recorded currents in both cases were blocked by the GABAA receptor antagonist 

bicuculline. (c) Group data from 21 slice recordings from KA-SE rats, normalized to the 

values obtained from sham controls. The frequency and amplitude but not the rise time 

and the decay time constant of the sIPSCs were significantly reduced in neurons from the 

KA-SE rats compared to those from the sham controls (**, p < 0.01). 
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Figure 3. The frequency but not the amplitude of miniature IPSCs (mIPSCs) in BLA 

neurons is reduced on days 7 to 10 after KA-SE. mIPSCs were recorded in the presence 

of D-APV (50 μM), SCH50911 (20 μM), GYKI 52466 (50 μM), and TTX (1 µM), at a 

holding potential of −70 mV. The frequency of the mIPSCs was reduced in a neuron from 

a KA-SE rat (b) compared to one from a sham control (a). The recorded currents in both 

cases were blocked by the GABAA receptor antagonist bicuculline. (c) Group data from 

15 slice recordings from KA-SE rats, normalized to the values from sham controls. The 

frequency, but not the amplitude, rise time, or decay time constant of the mIPSCs was 

significantly reduced in neurons from the KA-SE rats compared to those from the sham 

controls (**, p < 0.01). 
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Figure 4. The GluR5KR-mediated enhancement in the frequency of sIPSCs in the BLA 

is reduced after KA-SE. The GluR5KR agonist ATPA, at 300 nM or 1 μM, increased the 

frequency of sIPSCs recorded from BLA pyramidal neurons in sham control rats (a), but 

its effect was blunted in pyramidal neurons from KA-SE rats (b). The cumulative 

probability plots of interevent intervals and amplitudes of sIPSCs corresponding to the 

traces in (a) and (b) are shown at the bottom. (c) Pooled sIPSC frequency-data of 10 

slices from KA-SE rats and 11 slices from sham rats, expressed as a percentage of the 

sIPSC frequency during control conditions (before application of ATPA). The increase in 

sIPSC frequency by either concentration of ATPA was significantly lower in the KA-SE 

rats compared to the sham rats (**, p< 0.01). 
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Figure 5. GluR5KR-mediated effects on presynaptic GABA release as assessed by 

recordings of mIPSCs are nearly absent in BLA pyramidal neurons from KA-SE rats. In 

pyramidal neurons from sham control rats, the GluR5KR agonist ATPA, at 300 nM, 

increased the frequency of mIPSCs (a); this effect was almost absent in neurons from 

KA-SE rats (b). At 1 μM, ATPA reduced the frequency of mIPSCs in neurons from the 

sham group (a), but had virtually no effect on neurons from the KA-SE group (b). The 

cumulative probability plots of interevent intervals and amplitudes of mIPSCs 

corresponding to the traces in (a) and (b) are shown at the bottom. (c) Pooled mIPSC 

frequency-data from 9 KA-SE rat slices and 9 sham control rat slices expressed as a 

percentage of the mIPSC frequency before application of ATPA (**, p < 0.01). 
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Figure 6. Activation of GluR5KRs by 1 µM ATPA reduces the BLA field potential in 

slices from sham control rats but not in slices from KA-SE rats. Field potentials in the 

BLA were evoked by stimulation of the external capsule. ATPA (1 μM) reduced the 

amplitude of the field potentials in slices from the sham rats, but had no significant effect 

in those from the KA-SE rats. Sample traces from a sham rat slice, before and in the 

presence of ATPA, are shown to the left, and traces from a KA-SE rat slice are shown to 

the right. Numbers indicate the point in the time course of the sample traces. The data 

points indicate the mean ± SEM of peak amplitude values from 12 KA-SE rat slices and 

10 sham control rat slices. 
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Figure 7. ATPA (10 μM) induces lower frequency spontaneous epileptiform bursting in 

BLA slices of KA-SE rats than in those from sham rats. (a) Frequency of bursts in the 

presence of ATPA and during wash-out, for the sham and the KA-SE groups. The 

frequency of bursts was significantly higher in the slices from sham rats at all time points 

(p < 0.05). (b) Representative examples of the effects of 10 μM ATPA on spontaneous 

activity in BLA slices from sham and KA-SE rats. 
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Figure 8.  GABAergic interneurons are preferentially lost in the BLA after KA-SE, and 

neurodegeneration continues on days 7 to 10 after KA-SE. (a) Photomicrographs of 

Nissl-stained, GAD67-immunoreactive, and Fluoro-Jade (FJ)-stained sections from the 

BLA of sham rats and KA-SE rats 7–10 days after KA-SE. (b) Number of Nissl-stained 

neurons and GAD67-immunoreactive neurons in the KA-SE rats (n = 5), expressed as a 

percentage of the number of neurons in the sham-control group. (c) Ratio of GAD67-

immunoreactive neurons to Nissl-stained neurons in the BLA of sham control and KA-SE 

rats, demonstrating that a reduced number of GABA neurons make up the total 

population of neurons in the BLA of the KA-SE rats compared to sham control rats. 

Mean ± SEM values from 5 sham rats and 5 KA-SE rats. (d) Numbers of Fluoro-Jade-

positive cells in the BLA of KA-SE rats (n = 5) and sham control rats (n = 5). Fluoro-

Jade positive cells were present in the BLA of the KA-SE rats indicating ongoing 

neurodegeneration; no Fluro-Jade positive cells were noted in the BLA of sham control 

rats. *, p < 0.05; **, p < 0.005. Scale bar, 25 μm. 
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Figure 9. GluR5 kainate receptor and GABAA receptor 1 subunit protein expression in 

amygdala, hippocampus and thalamus of KA-SE rats. (a) Representative Western blots 

showing GluR5, GABAA α1, and β-actin antibody binding, in the BLA, CA3 subfield of 

the hippocampus, and the ventral posteromedial and ventral posterolateral thalamic nuclei 

(VPM/VPL). (b) Quantification of GluR5 and GABAA 1 protein densities relative to β-

actin density in KA-SE rats, expressed as a percent of the value in sham control rats. 

Values are mean ± SEM (n = 6); *, p < 0.05; **, p< 0.01; ***, p < 0.005. 
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Diazepam administration after prolonged status epilepticus reduces 
neurodegeneration in the amygdala but not in the hippocampus during 

epileptogenesis. 
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Abstract 

An episode of status epilepticus (SE), if left untreated, can lead to death, or brain damage 

with long-term neurological consequences, including the development of epilepsy. The 

most common first-line treatment of SE is administration of benzodiazepines (BZs). 

However, the efficacy of BZs in terminating seizures is reduced with time after the onset 

of SE; this is accompanied by a reduced efficacy in protecting the hippocampus against 

neuronal damage, and is associated with impaired function and internalization of 

hippocampal GABAA receptors. In the present study, using Fluoro Jade-C staining, we 

found that administration of diazepam to rats at 3 hours after the onset of kainic acid-

induced SE, at a dose sufficient to terminate SE, had no protective effect on the 

hippocampus, but produced a significant reduction in neuronal degeneration in the 

amygdala, piriform cortex, and endopiriform nucleus, examined on days 7 to 9 after SE. 

Thus, in contrast to the hippocampus, the amygdala and other limbic structures are 

responsive to neuroprotection by benzodiazepines after prolonged SE, suggesting that 

GABAA receptors are not significantly altered in these structures during SE. 
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Introduction 

Status epilepticus (SE) in humans is an acute medical emergency associated with 

significant morbidity and mortality (Krumholz et al. 1995; Cascino et al. 1998; 

Logroscino et al. 2002). Seizures during SE are generalized and enduring, and if not 

controlled timely, brain damage may occur (Treiman 2007) leading to neurological, 

cognitive, or other behavioral deficits (Krumholz et al. 1995).  Furthermore, after an 

episode of SE, patients have a high risk of developing epilepsy (Hesdorffer et al. 1998).  

This is because SE can trigger epileptogenesis, a process whereby –in the absence of 

further seizures after the initial SE episode– structural and functional alterations take 

place in certain brain regions that play a key role in epilepsy, culminating in the 

appearance of spontaneous seizures and eventually the development of epilepsy. SE has 

been successfully used in animal models as a trigger for epileptogenesis and the 

development of temporal lobe epilepsy (TLE). In the SE animal model, neuronal loss and 

reorganization of neuronal circuits during epileptogenesis are similar to 

neuropathological findings in TLE patients (for a review see Pitkänen et al. 2007), 

particularly in regard to the neurodegeneration that occurs in limbic structures (Tuunanen 

et al. 1996; Covolan and Mello 2000; Aroniadou-Anderjaska et al. 2008).   

The first-line treatment for SE is administration of benzodiazepines (BZs), which 

increase the efficacy of GABAA receptor-mediated inhibition by binding to specific sites 

on GABAA receptors and allosterically modulating the GABAA receptor complex 

(Macdonald and Olsen 1994; McKernan and Whiting 1996). However, BZs lose their 

efficacy if not administered early (Treiman et al. 1998), and higher concentrations, or 

more aggressive second- and third-line antiepileptic drugs must be used (Bleck 1999; 



 78 

Jones et al. 2002; Riss et al. 2008). The weakening anticonvulsant effect of BZs with 

increasing duration of SE has been associated with impaired function and internalization 

of GABAA receptors in the hippocampus (Goodkin et al. 2005; Naylor et al. 2005; Feng 

et al. 2008).  This is consistent with the lack of protection against neuronal loss in the 

hippocampus when the BZ diazepam is administered 3 hours after the onset of SE 

(Pitkänen et al. 2005).  It is unknown, however, if other limbic structures that play an 

important role in seizure generation also lose their responsiveness to BZs soon after the 

onset of SE. Despite the loss of hippocampal responsiveness to BZs as SE progresses, 

these drugs maintain some effectiveness in reducing seizures, particularly if the doses are 

increased (Treiman. 1990; Jones et al. 2002). This suggests that other brain regions that 

are important in sustaining status epilepticus may remain responsive to benzodiazepines 

even at later stages of SE. As a first step in investigating this question, we compared the 

protective effect of diazepam against neuronal degeneration in the hippocampus and in 

the amygdala, as well as the piriform cortex and endopiriform nucleus, when the drug is 

administered at 3 hours after SE.  Neuronal degeneration was examined on days 7 to 9 

after SE.  

We studied the amygdala because of its important role in TLE (Quesney 1986; 

Pitkänen et al. 1998; Aroniadou-Anderjaska et al. 2008), as well as in the generation and 

spread of seizure activity in the SE and kindling animal models of TLE (White and Price 

1993a,b; Mohapel et al. 1996). The volume of the amygdala is often reduced in TLE 

patients (Cendes et al. 1993; Cendes et al. 1994; Wolf et al. 1997; Van Paesschen et al. 

2001), while in SE animal models the amygdala suffers extensive neuronal loss 

(Tuunanen et al. 1996; Hsieh 1999).  Similarly, the piriform cortex and the adjacent 
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endopiriform nucleus also undergo substantial neuronal loss after SE (Ben-Ari, 1985; 

Covolan and Mello 2000; Druga et al. 2003; Chen and Buckmaster 2005) and may play 

an important role in epileptogenesis (for a review see Majak and Moryś, 2007). We found 

that diazepam did not reduce neuronal degeneration in the hippocampus, while it had a 

significant protective effect in the amygdala, the piriform cortex and the endopiriform 

nucleus. 

 

Materials and Methods 

Animals. Experiments were performed on male Sprague Dawley rats (Taconic Farms, 

Rockville, MD), 5-6 weeks old, weighing 170-200 g at the start of the experiments. 

Animals were individually housed in an environmentally controlled room (20–23°C, 12-h 

light/12-h dark cycle, lights on 06:00 am), with food and water available ad libitum. All 

animal experiments were in accordance with our institutional guidelines after obtaining 

approval of the Institutional Animal Care and Use Committee (IACUC).  

 

Induction of Status Epilepticus. Five rats implanted with four cortical screw electrodes 

plus 4 non-implanted rats were injected (i.p.) with kainic acid (KA) to induce SE, 

following a modified titration protocol (Hellier et al. 1998).  The electrode-implanted rats 

were allowed one week of recovery before KA injections. Rats were initially treated with 

7.5-8 mg/kg KA dissolved in 0.1 M phosphate buffered normal saline (PBS; 5mg/ml), 

followed by subsequent doses of 4-5 mg/kg until the onset of SE. For implanted rats, SE 

onset was defined by 5 min of continuous generalized electrographic seizure activity in 

all four cortical electrodes involved with no breaks longer than 10 seconds; SE was 
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allowed to continue for 180 minutes, until termination of both behavioral and 

electrographic seizures with 25 mg/kg of diazepam (i.p.).  This group of rats will be 

referred to as KA+DZP group (n = 5).  The four non-implanted rats were given KA to 

induce SE, using behavioral assessments to determine the necessity of additional 

injections and the onset of SE (defined by the first generalized behavioral seizure; Stage 4 

from Racine 1972).  In this group, diazepam was not used to terminate SE (KA group). 

Behavioral SE was observed for more than 4 hours after the first Stage 4 behavioral 

seizure. SE was still ongoing when monitoring was stopped. There were no mortalities. 

Previous studies have shown that SE induced by KA results in behavioral seizures that 

can continue for more than 7 hours (Tuunanen et al. 1999), and epileptiform spiking for 

up to 12-14 hours (Pitkänen et al. 2005) after KA injections. The KA group received 16.6 

± 0.67 KA injections, and the KA +DZP group received 20.5 ± 2.55 KA injections to 

induce SE (no significant difference between the number of KA injections needed in the 

two groups; P< 0.31).  

The KA +DZP group was electrode-implanted so that we could determine the 

efficacy of diazepam to terminate electrographic seizures in addition to the behavioral 

seizures. In previous experiments, we have examined neuronal degeneration (using 

Fluoro-Jade C) in “sham rats” that were electrode-implanted but received no other 

treatment, and control rats which did not receive any treatment. There were no 

degenerating cells in the amygdala or hippocampus in either group. Therefore, the 

electrode implantation in the group which received diazepam is unlikely to have affected 

the results.  
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Fixation & Tissue Processing.  The four rats of the KA group and the five rats of the 

KA+DZP group were used for morphological analysis of the amygdala, hippocampus, 

piriform cortex, and endopiriform nucleus.  Seven to nine days after KA-induced SE , 

rats were deeply anesthetized using ketamine (60 mg/kg i.p.) and medetomidine (0.5 

mg/kg i.p.) and transcardially perfused with PBS (100 mL) followed by 4% 

paraformaldehyde (250 mL). The brains were removed and post-fixed overnight at 4º C, 

then transferred to a solution of 30% sucrose in PBS for 72 hours, and frozen with dry ice 

before storage at -80º C until sectioning.  A 1-in-6 series of sections containing the 

rostro-caudal extent of the amygdala was cut at 40 µm on a sliding microtome.  One 

series of sections was mounted on slides (Superfrost Plus, Daigger, Vernon Hills, IL) in 

PBS for Nissl staining with cresyl violet.  An adjacent series of sections was also 

mounted on slides for Fluoro-Jade C (FJ) staining.   

 

Fluoro-Jade C Staining. Fluoro-Jade C (Histo-Chem, Jefferson, AK) was used to identify 

dying neurons in the amygdala, hippocampus, piriform cortex, and endopiriform nucleus, 

at 7-9 days after SE. Mounted sections were air-dried overnight, and then immersed in a 

solution of 1% sodium hydroxide in 80% ethanol for 5 min. The slides were then rinsed 

for 2 min in 70% ethanol, 2 min in dH20, and incubated in 0.06% potassium 

permanganate solution for 10 min. After a 2 min rinse in dH20, the slides were transferred 

to a 0.0001% solution of Fluoro-Jade C dissolved in 0.1% acetic acid for 10 minutes. 

Following three 1-minute rinses in dH20, the slides were dried on a slide warmer, cleared 

in xylene for at least 1 min and coverslipped with DPX (Sigma). 
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Evaluation of Fluoro-Jade C. Tracings of the amygdala, dorsal hippocampus, piriform 

cortex, and endopiriform nucleus from an adjacent series of Nissl-stained sections were 

superimposed on the FJ-stained sections.  For qualitative analysis of FJ-stained sections, 

the following rating system was used to determine the score for the extent of 

degeneration in each structure: 0 = no damage; 1 = minimal damage (1-10%); 2 = mild 

damage (10-25%); 3 = moderate damage (25-45%); and 4 = severe damage (>45%). 

Qualitative assessments were made from 6 sections per animal, and the average for each 

animal was recorded.  For quantitative analysis, FJ positive cells were counted in each 

outlined structure at 20, and recorded as a density (number of cells per mm2) from, on 

average, 6 sections.  

 

Statistical Analysis All statistical values are presented as mean ± SEM. The KA group 

and the KA +DZP group were compared using the unpaired Student’s t test. Differences 

between the two groups were considered statistically significant when P < 0.05. Sample 

sizes (n) refer to the number of rats. 

 

Results 

Neuropathology of Limbic Structures 

Neuronal damage of limbic structures occurs both acutely (Tuunanen et al. 1999; 

Covolan and Mello 2000) and as a delayed process in the weeks, or even months, after 

SE (Tuunanen et al. 1996; Chen and Buckmaster 2005).  In the present study, 

degenerating neurons were identified using FJ, a fluorescent marker that binds to 

irreversibly damaged neurons (Schmued et al. 1997).  We characterized the extent of 
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neurodegeneration in different limbic structures during epileptogenesis triggered by KA-

induced SE in two groups: rats in which SE was not terminated with diazepam (KA rats; 

n = 4) and rats in which SE was terminated after 3 hours with diazepam (KA +DZP rats; 

n = 5).  In both groups, the region with the most extensive ongoing degeneration, having 

the highest density of FJ+ cells, was the endopiriform nucleus, followed by the amygdala 

(Table 1; Figure 3).  To a lesser extent, neurodegeneration was also observed in the 

piriform cortex and hippocampus (Table 1; Figure 3).  

 

Hippocampus 

In the hippocampus of the KA rats, 18 ± 5 FJ+ cells were counted (see methods), on days 

7 to 9 after KA-induced SE.  The extent of neurodegeneration was not significantly 

different from that in the KA +DZP rats, in which 25 ± 12 FJ+ cells were counted in the 

hippocampus (Figures 1 and 3; Table 1).  The qualitative scoring system also showed no 

significant difference in these groups, with a score of 1.71 ± 0.29 for the KA group and 

1.50 ±0.46 for the KA +DZP group.  The most extensively damaged subfields were the 

CA3, CA1 and hilar region.  Thus, administration of diazepam at 3 hours after the onset 

of SE has no effect on the extent of neurodegeneration in the hippocampus, 7 to 9 days 

after SE. 

 

Amygdala 

The amygdala plays a central role in the generation and spread of seizure activity in 

animal models of epileptogenesis (White and Price 1993a,b; Mohapel et al. 1996). 

Benzodiazepine-sensitive GABAA receptors are present in the amygdala (Sieghart and 
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Sperk 2002).  In the present study, we found extensive neurodegeneration in the 

amygdala, 7-9 days after SE, which was significantly reduced by diazepam. The 

qualitative analysis revealed a score of 2.88 ± 0.50 for the KA group, which was 

significantly higher than the score of 1.23 ± 0.34 in the KA +DZP group (p < 0.05).  In 

the quantitative analysis, we counted 105 ± 5 FJ+ cells/mm2 in the amygdala of the KA 

rats. This number was significantly reduced (by 63%) in the KA +DZP group, in which 

39 ± 11 FJ+ cells were counted (Figures 2 and 3; Table 1; P < 0.005). Thus, diazepam 

administered after prolonged SE reduces neuronal degeneration in the amygdala, 7 to 9 

days after SE. 

 

Piriform Cortex & Endopiriform Nucleus 

The piriform cortex and the adjacent endopiriform nucleus are also susceptible to damage 

after SE (Ben-Ari 1985; Covolan and Mello 2000; Druga et al. 2003; Chen and 

Buckmaster 2005).  In the present study, we determined if terminating SE after 3 hours 

with diazepam reduces neurodegeneration in these two brain regions.  At 7-9 days after 

SE, the qualitative evaluation score for neurodegeneration in the piriform cortex was 3.63 

± 0.10 for the KA group, compared to 1.30 ± 0.37 for the KA +DZP group, indicating 

that diazepam significantly (P < 0.001) reduced the extent of neurodegeneration (Figure 

3; Table 1).  Similarly, we found a significant reduction (77%; P < 0.05) in the number of 

degenerating cells in the piriform cortex of the KA +DZP rats (Figures 2 and 3; Table 1).  

Thus, in the KA group we counted 42 ± 10 FJ+ cells, while the number of FJ+ cells in the 

KA +DZP group was 10 ± 3.   



 85 

The endopiriform nucleus had the densest FJ+ cells compared to the other 

structures (Figures 2 and 3; Table 1).  The qualitative evaluation score for 

neurodegenerating cells in the endopiriform nucleus of rats in the KA group was 3.50 ± 

0.40, whereas in the KA +DZP group it was significantly lower (1.77 ± 0.28; P < 0.01).  

Similarly, the number of FJ+ cells in the KA group was 194 ± 22, while the number of 

FJ+ cells in the KA +DZP group was 102 ± 28, a 47% reduction (P < 0.05; Figures 2 and 

3, Table 1). 

 

Discussion 

In the present study, we found that neurodegeneration occurring at 7-9 days after 

KA-induced SE is more extensive in the amygdala and the endopiriform nucleus 

compared to the piriform cortex and the hippocampus, and that SE termination after 3 

hours by administration of diazepam results in significant protection from 

neurodegeneration in the amygdala, endopiriform nucleus, and piriform cortex, but not in 

the hippocampus.   

Atrophy of temporal lobe structures, which implies primarily neuronal loss, is a 

frequently reported histopathology of TLE patients (Babb and Brown 1989; Babb 1991; 

Cendes et al. 1993; Hudson et al. 1993; Williamson et al. 1993; Cendes et al. 1994).  

Similarly, in animal models of TLE, neuronal damage of limbic structures is evident after 

an epileptogenic insult (Schwob et al.1980; Heggli and Malthe-Sørensson 1982; 

Tuunanen et al. 1996; Tuunanen et al. 1999; Covolan and Mello 2000; Chen and 

Buckmaster 2005).  The amygdala appears to be particularly vulnerable to seizure-

induced neuronal damage, as seen either acutely after SE (Schwob et al. 1980; Tuunanen 
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et al. 1999, Covolan and Mello 2000), during the epileptogenic latent period (Heggli and 

Malthe-Sørensson 1982; Tuunanen et al. 1996, Qashu et al. 2008), or after spontaneous 

seizures have developed (Chen and Buckmaster 2005).  By using a marker specific for 

irreversibly degenerating cells (Schmued et al. 1997), we show here that the extent of 

ongoing neurodegeneration during epileptogenesis is greater in the amygdala and the 

endopiriform nucleus compared to the hippocampus and piriform cortex.  A higher 

susceptibility of the amygdala to seizure-induced brain damage compared to the 

hippocampus has also been observed in previous studies after KA-induced SE (Schwob et 

al. 1980; Heggli and Malthe-Sørensson 1982; Riba-Bosch and Perez-Clausell 2004; Chen 

and Buckmaster 2005), but also after SE induced by other mechanisms, such as 

administration of nerve agents (Shih et al. 2003). There is evidence suggesting that the 

amygdala is even more prone to generating seizure activity than the hippocampus 

(Goddard 1967; Kairiss et al. 1984; Racine et al. 1988), and, therefore, during SE the 

amygdala perhaps suffers more intense seizures than the hippocampus, resulting in 

greater neuropathological damage. It is not clear at present if there are also other 

mechanisms related to the physiology and biochemistry of the amygdala that make this 

structure more vulnerable to seizure-induced neuronal damage than other brain regions, 

even when the intensity and duration of the seizures are not higher in the amygdala. The 

endopiriform nucleus is another brain region that is highly susceptible to seizure-induced 

neuronal damage, as revealed in the present study, as well as in previous studies (Covolan 

and Mello 2000; Druga et al. 2003; Chen and Buckmaster 2005). 

GABAergic interneurons in the amygdala are the most vulnerable to SE-induced 

damage (Tuunanen et al. 1996).  We have recently found that in the basolateral 
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amygdala, the amygdala nucleus that plays the most central role in the initiation and 

propagation of seizure activity (White and Price 1993a,b; Mohapel et al. 1996), the loss  

of GABAergic neurons is significantly greater than the loss of other cells, 7-10 days after 

SE, resulting in a dramatic reduction of inhibitory activity (Qashu et al. 2008).  Thus, 

because it is GABAergic neurons that are primarily lost in the amygdala after SE, the 

amygdala circuitry becomes hyperexcitable, which may contribute significantly to the 

progression of epileptogenesis and the development of epilepsy. It is important therefore 

to protect against SE-induced neuronal loss in the amygdala. 

We found in the present study that diazepam administration to terminate SE 

reduced neuronal degeneration in the amygdala, endopiriform cortex and piriform cortex, 

but not in the hippocampus. Benzodiazepine (BZ)-sensitive receptors are densely located 

in limbic structures (Niehoff and Kuhar 1983; Fritschy and Mohler 1995), and BZs are 

the first-line treatment for termination of SE in humans (Chen and Wasterlain 2006), and 

reduction of mortality after prolonged SE in animal models of TLE (Mello et al. 1993).  

As SE duration increases, however, BZs are less potent as anticonvulsants (Walton and 

Treiman 1988; Jones et al. 2002) and neuroprotectants (Pitkänen et al. 2005), and recent 

data suggest that this could be due to an internalization of GABAA receptors, as described 

in the hippocampus, beginning in the first hour of SE (Naylor et al. 2005; Goodkin et al. 

2005).  The failure of neuroprotection in the hippocampus by diazepam after 3 hours of 

SE reported previously (Pitkänen et al. 2005) is consistent with our results that diazepam 

administration after 3 hours of SE did not reduce neurodegeneration in the hippocampus, 

one week after SE.  However, the number of degenerating cells in the amygdala, piriform 

cortex, and endopiriform nucleus was reduced by diazepam. Thus, the impaired function 
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and internalization of GABAA receptors in the hippocampus (Goodkin et al. 2005; Naylor 

et. al. 2005; Feng et al. 2008) that diminish the efficacy of diazepam may not occur in 

other limbic structures that retain responsiveness to BZs after prolonged SE.   

A reduction of GABAA receptor expression has not been reported acutely after SE 

in the amygdala, piriform cortex, or endopiriform nucleus.  In fact, Kish et al. (1983) 

have shown no change in radio-labeled BZ- or GABA-binding 2 hours after SE in the 

amygdala/piriform cortex area; however, this study also reported no change in the 

hippocampus.  Radio-labeled ligands can bind non-neuronal cell types such as glia; this 

may account for the difference in the results of Kish et al. (1983) and those by Goodkin et 

al. (2005), and Naylor et al. (2005), which used electrophysiology and 

immunohistochemistry to show SE-induced intracellular accumulation/internalization of 

GABAA receptors in the hippocampus.  Thus, it is unclear at present whether GABAA 

receptors are not downregulated in the amygdala, piriform cortex, and endopiriform 

nucleus during prolonged SE, which would account for the neuroprotective effect of 

diazepam in these brain regions.  

A direct neuroprotective effect by diazepam administration after prolonged SE 

may be difficult to tease apart from its anticonvulsant effect.  Because the severity of 

neuronal loss corresponds to the duration of SE (Lemos and Cavalheiro 1995; Gorter et 

al. 2003), the termination of SE by diazepam alone may be sufficient to reduce the 

subsequent neuronal loss without a direct neuroprotective effect of diazepam.  The dose 

of diazepam used in the present study (25 mg/kg) is effective at terminating SE, as 

determined by disruption of electrographic cortical seizure activity (not shown here).  

However, the use of deep electrodes would be necessary to determine if subcortical 
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electrographic seizure activity was also attenuated or terminated with diazepam.  Because 

seizure or spiking activity in subcortical structures can persist even after attenuation of 

cortical seizure activity (unpublished observations), and, in the hippocampus, GABAA 

receptors are internalized within the first hour of SE (Goodkin et al. 2005; Naylor et al. 

2005; Feng et al. 2008), the lack of a neuroprotective effect of diazepam in the 

hippocampus may be explained by a reduced anticonvulsant efficacy of diazepam within 

this region during prolonged SE.  

Pitkänen et al. (2005) reported disease modifying effects of diazepam 

administered after 3 hours of SE, such as reduced frequency of spontaneous seizures; this 

was attributed to reduced SE duration compared to that of vehicle-treated rats.  Although 

not analyzed here, we would have expected to find similar results, not only because of SE 

termination, but also because of the significant reduction of neurodegeneration in all 

limbic structures studied, apart from the hippocampus. 

Because the efficacy of many of the proposed anti-epileptogenic and/or 

neuroprotective treatments has been analyzed in a limited number of brain areas, we 

underscore here the need to evaluate structures beyond the hippocampus for 

neuroprotective efficacy during epileptogenesis.  The amygdala, a limbic structure that 

undergoes extensive neurodegeneration after SE-induced epileptogenesis, responds to 

benzodiazepine treatment after prolonged SE, when the hippocampus does not.  As the 

mechanisms underlying pharmacoresistance during prolonged SE are beginning to be 

unraveled in the hippocampus (Goodkin et al. 2005; Naylor et al. 2005; Feng et al. 2008), 

it is essential to understand the cellular changes that occur in other limbic structures for 
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assessment of the full potential of anticonvulsant and neuroprotective therapies in animal 

models of TLE.  
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TABLE 1 

Quantitative Evaluation (number of FJ+ cells, mmP

-2
P) 

 KA group KA+DZP group p % reduction 

Amygdala 105 ± 5 39 ± 11 0.0024 62.7 

Hippocampus 18 ± 5 25 ±12 0.640 - 

Piriform Cortex 42 ± 10 10 ± 3 0.0107 76.9 

Endopiriform 
Nucleus 

194 ± 22 102 ± 28 0.0414 47.33 

 

Qualitative Evaluation Score of FJ Staining 

 KA group KA+DZP group p % reduction 

Amygdala 2.88 ± 0.50 1.23 ± 0.34 0.0264 57.2 

Hippocampus 1.71 ± 0.29 1.50 ±0.46 0.7303 12.2 

Piriform Cortex 3.63 ± 0.10 1.30 ± 0.37 0.0009 64.2 

Endopiriform 
Nucleus 

3.50 ± 0.40 1.77 ± 0.28 0.0077 49.4 

Data from quantitative and qualitative analysis of Fluoro-Jade C staining in different 

limbic structures from rats 7-9 days after KA-induced SE (KA group) or after KA-

induced SE that was terminated 3 hours after its onset, by administration of diazepam 

(KA +DZP group). Values are presented as mean ± standard error of the mean. 

Qualitative scale: 0 = no damage, 1 = minimal damage (0–10%), 2 = mild damage (10–

25%), 3 = moderate damage (25–45%), and 4 = severe damage (>45%). 
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Figure 1. Termination of KA-induced SE by diazepam, 3 hours after its onset, does 

not reduce neuronal degeneration in the hippocampus during epileptogenesis. Nissl-

stained (a) and Fluoro-Jade C-stained (b) sections demonstrating hippocampal subfields. 

The CA1, CA3, and hilus regions are shown at higher magnification in (c). There was no 

significant difference in the number of the irreversibly degenerating cells between the 

group that was administered diazepam (KA +DZP group) 3 hours after the onset of SE, 



 100 

and the group that was not treated with diazepam (KA group). Staining in this example 

was performed 7 days after SE.  Scale bar = 300 µm. 
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Figure 2. Termination of KA-induced SE by diazepam, 3 hours after its onset, 

reduces neurodegeneration in the amygdala, piriform cortex, and endopiriform 

nucleus during epileptogenesis. Nissl-stained (a) and Fluoro-Jade C-stained (b) sections 

demonstrating the medial (Me), basolateral (BLA) nuclei of the amygdala, the piriform 

cortex (Pir), and endopiriform nucleus (En). The Fluoro-Jade C-stained sections are 
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shown at higher magnification in (c). The number of irreversibly degenerating cells in the 

rats that were administered diazepam (KA +DZP group), 3 hours after the onset of SE, 

was significantly lower than the number of degenerating cells in the group that was not 

treated with diazepam (KA group). Staining in this example was performed 7 days after 

SE. Scale bar = 300 µm. 
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Figure 3. Quantitative and qualitative analysis of Fluoro-Jade C staining reveal that 

termination of KA-induced SE by diazepam, 3 hours after its onset, reduces neuronal 

degeneration during epileptogenesis in the amygdala, piriform cortex, and 

endopiriform nucleus, but not in the hippocampus.  a) Comparison of the number of 

Fluoro Jade-C positive stained cells per mmP

2
P in the amygdala, hippocampus, piriform cortex 

Nucleus 
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and endopiriform nucleus of rats in which SE induced by kainic acid was not terminated (KA 

group; n = 4 rats) and rats in which SE was terminated after 3 hours with diazepam (KA 

+DZP group; n = 5 rats).  b) Qualitative assessment of the extent of neurodegeneration 

produced similar relationships between the KA group and the KA +DZP group, as the 

quantitative evaluation; scale:  0 = no damage; 1 = minimal damage (0-10%); 2 = mild 

damage (10-25%); 3 = moderate damage (25-45%); 4 = severe damage (>45%). Values are 

mean ± SEM, * p<0.05, ** p<0.005; *** p<0.001. 
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CHAPTER 4 

 

Discussion & Future Directions 

In patients that develop TLE after an acute brain insult, such as traumatic brain 

injury or status epilepticus, a seizure-free, epileptogenic latent period is occurs, ranging 

from days to years after the insult, before the appearance of spontaneous seizures and 

epilepsy.  It is believed that the progressive structural and functional neuronal changes 

observed during this latent period are the pathophysiological substrate for enhanced 

seizure susceptibility, and that interruption of these changes will interfere with the 

development of spontaneous seizures. Consequently, the aim of understanding the 

mechanisms of epileptogenesis has been at the forefront of epilepsy research during the 

last decade (Jacobs et al., 2001; Baulac and Pitkänen, 2008).   

Using animal models of temporal lobe epilepsy, a large amount of data has been 

collected, regarding pathological alterations during epileptogenesis, most of which have 

focused on the hippocampus.  Considering the dense intra- and inter-nuclear network of 

connections within the amygdala, activation of a small portion of the amygdala in 

pathological conditions may cause excitatory activity to become distributed in parallel 

among the nuclei of the amygda.  Because the amygdala has extensive monosynaptic 

connections to temporal as well as extra-temporal regions (Amaral et al., 1992), this 

excitatory activity may then be rapidly propagated to other brain regions, recruiting other 

structures to form an epileptic circuit.  Thus, it is not surprising that the amygdala plays a 

pivotal role in the spread of seizure activity (White and Price, 1993a,b; Mohapel et al., 
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1996), yet changes that take place in the amygdala during epileptogenesis are largely 

unknown.   

The goal of this research was to study alterations in the amygdala that may 

contribute to the development of spontaneous seizures, as well as to determine the effect 

of terminating prolonged SE with diazepam on the extent of neurodegeneration during 

epileptogenesis.  We found the inhibitory tone in the BLA is reduced at 7-10 days after 

KA-SE and before the occurrence of spontaneous seizures in most rats, and the BLA 

endures significant neuronal loss, of which GABAergic neurons are particularly 

vulnerable.  We also found that SE termination after 3 hours by administration of 

diazepam results in significant protection from neurodegeneration 7-9 days after KA-SE 

in the amygdala, endopiriform nucleus, and piriform cortex, but not in the hippocampus.  

These results emphasize the importance of studying limbic structures in addition to the 

hippocampus when identifying the neuroprotective potential of therapeutic agents after 

status epilepticus.  

 

Reduced inhibitory tone and neuronal loss in the BLA after SE-induced 

epileptogenesis 

Hyperexcitable, epileptic circuits arise from an imbalance between excitation and 

inhibition.  Impairments in GABAergic inhibitory transmission have been reported in the 

BLA of the epileptic amygdala (Gean et al., 1989; Rainnie et al., 1992; Smith and Dudek, 

1997; Mangan et al., 2000; for a review see Aroniadou-Anderjaska et al., 2008). 

Spontaneous IPSPs are reduced or absent in the BLA several months after SE induced by 

hippocampal stimulation (Mangan et al., 2000).  In the BLA of rats several months after 
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KA-SE, hyperexcitable field responses are observed, and are at least partially due to 

reduced inhibition (Smith and Dudek, 1997).  Several months after the induction of 

kindled seizures in the amygdala, spontaneous IPSPs are also reduced (Gean et al., 1989; 

Rainnie et al., 1992). While it is clear that inhibitory transmission is impaired in the BLA 

of epileptic rats, we report here that the GABAergic system is diminished during 

epileptogenesis.  In the BLA, we found reduced inhibitory tone 7-10 days after SE in 

KA-SE rats compared to sham rats, demonstrated by a reduction of the frequency and 

amplitude of sIPSCs recorded in principal neurons.  These findings, in addition to 

decreased frequency of mIPSCs, suggest a reduced inhibitory input to principal cells. The 

lack of a change in mIPSC amplitude disputes any alterations in the number/density of 

postsynaptic GABAA receptors.  Thus, during epileptogenesis, the inhibitory transmission 

of the BLA is impaired, which could be due to loss of interneurons, a lowered probability 

of transmitter release, and/or a reduced excitatory drive onto the remaining interneurons, 

but not to a change in the responsiveness of GABAA receptors.   

Neuronal loss has been demonstrated in the amygdala in human patients with TLE 

(Cendes et al., 1993; Hudson et al., 1993; Wolf et al., 1997; Guerreiro et al., 1999) and in 

the BLA in rats after KA-SE (Tuunanen et al., 1996, 1999; Pitkänen et al., 1998; Covolan 

and Mello, 2000).  Specifically, a loss of GABAergic neurons has been shown in the 

BLA two weeks after KA-SE (Tuunanen et al., 1996) and after amygdala kindling 

(Callahan et al., 1991).  We used design-based stereology to quantify the number of total 

neurons, and the number of GABAergic neurons in the BLA.  Stereological estimations 

offer the benefit of efficiently providing more accurate and reliable results compared to 

the standard quantitative methodology (West, 2002; Schmitz and Hof, 2005).  Notably, 
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this is the first reported stereological estimation of total neuron number and total 

GABAergic neuron number of the BLA, in normal physiological conditions as well as 

during pathophysiological condition of epileptogenesis.  Similar to previous studies using 

non-stereological estimations (McDonald, 1992), we found that GABAergic neurons 

compromise 14% of the population of total neurons in the BLA.  At 7-10 days after KA-

SE, we found a loss of 15% of total neurons in the BLA, and an even greater significant 

loss (43%) of GABAergic neurons in the BLA at this time point in epileptogenesis.   

The reduced inhibitory tone in the BLA during epileptogenesis, as observed by 

recording from BLA pyramidal cells, may be directly associated with the greater loss of 

GABAergic neurons after KA-SE.  It is unlikely that dysfunction of GABAergic neurons 

contributes to the reduced inhibitory tone, as IPSPs from direct stimulation of nearby 

neurons are unaltered (Gean et al., 1989; Rainnie et al., 1992).  However, future studies 

should determine if the reduced inhibitory tone is also partially due to reduced excitatory 

input onto interneurons.  Recording excitatory post-synaptic currents in BLA 

interneurons at this time point in epileptogenesis will accomplish this. 

Similar to the susceptibility of GABAergic neurons to cell death after SE, 

interneurons in the hippocampus are also vulnerable to SE-induced damage (Sloviter, 

1987; Best et al., 1993; Obenhaus et al., 1993; Morin et al., 1998; Sun et al., 2007).  Why 

GABAergic neurons are specifically vulnerable to SE-induced injury is not known.  

Further, some subpopulations of interneurons in the hippocampus are more vulnerable 

than others (Sloviter, 1987; Best et al., 1993).  An impaired ability to buffer glutamate-

mediated calcium toxicity during seizures (Sloviter, 1991), and a failure of 

neuroprotective signaling pathways have been associated with susceptibility of 



 109 

interneurons to SE-induced cell death in the hippocampus (Choi et al., 2007).  Similar 

mechanisms may also be associated with the vulnerability of subpopulations of 

GABAergic interneurons in the BLA (Tuunanen et al., 1996).  Stereological 

quantification of sub-types of interneurons in the BLA at this point in epileptogenesis 

will determine if specific populations of GABAergic neurons are more vulnerable than 

others to SE-induced injury.   

Kainate receptors containing the GluR5 subunit are highly expressed in the BLA 

compared to other brain regions (Bettler et al., 1990; Li et al., 2001; Braga et al., 2003). 

We have previously shown that GluR5KRs modulate neuronal excitability in the BLA, 

such that postsynaptic GluR5KRs on somatodendritic sites of BLA interneurons enhance 

the probability of GABA release by depolarizing interneurons, and presynaptic 

GluR5KRs on GABAergic terminals facilitate GABA release when activated by very low 

concentrations of an agonist, but inhibit GABA release by stronger stimulation (≥ 1 uM) 

of the GluR5 agonist ATPA (Braga et al., 2003).  In the BLA 7-10 days after KA-SE, 

these effects of GluR5KR activation are significantly weaker than sham rats.  While we 

found reduced expression of the GluR5 subunit, this reduction, and the weakened 

function of GluR5KR activation may be attributed to loss of interneurons that express the 

GluR5KR.  Although GluR5KR antagonists have anticonvulsant properties in acute 

seizure models (Smolders et al., 2002; Rogawski et al., 2003), this effect is not expected 

to be observed during epileptogenesis, when GluR5KR expression is reduced. 

 

Potential compensatory responses in components of the GABAergic system 
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 In situ hybridization, Western blot, and receptor binding studies have shown that SE-

induced epileptogenesis involves alterations in the expression of GABAA receptor 

subunits in the hippocampus (Gibbs et al., 1997; Schwarzer et al., 1997; Tsunashima et 

al., 1997; Brooks Kayal et al., 1998; Fritschy et al., 1999; Gilby et al., 2005; Raol et al., 

2006) and the amygdala (Gilby et al., 2005; Rocha et al., 2007).   We found an elevation 

in the expression level of the α1 subunit of the GABAA receptor in the BLA 7-10 days 

after KA-SE.  However, the whole-cell electrophysiology experiments of the present 

study found no change in the number/density of postsynaptic GABAA receptors in the 

BLA after KA-SE, demonstrated by no change in the amplitude of GABAA mediated 

mIPSCs.  The up-regulation of the GABAA α1 may lead to more GABAA receptors 

containing the α1 subunit expressed at the membrane without affecting the total 

number/density of GABAA receptors.  Previous studies, however, have reported that 

benzodiazepine binding in the BLA in control rats was not significantly different from 

rats one week or 30 days after pilocarpine-induced SE (Rocha et al., 2007) or 40 days 

after KA-SE (Rocha and Ondarza-Rovira, 1999), suggesting that the up-regulation of 

GABAA α1 does not result in more functional synaptic GABAA receptors containing the 

α1 subunit at the membrane. The upregulation of GABAA α1 may be a compensatory 

response to reduced inhibition, however a failure of receptor assembly, transport, or 

subsequent expression on the membrane, and/or receptor phosphorylation (Pumain and 

Laschet, 2006) may occur.  The anticonvulsant effects of benzodiazepines are mediated 

by GABAA receptors containing the α subunit (Pritchett et al., 1989; Rudolph et al., 1999; 

Crestani et al., 2000; Da Settimo et al., 2007).  Thus, a failure of expression of GABAA 
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receptors containing the α1 subunit at the membrane may be important mechanism of 

pharmacoresistance seen in TLE patients (Semah et al., 1998). 

 

Diazepam administration after prolonged SE reduces neurodegeneration in the 

amygdala, but not in the hippocampus 

Atrophy of limbic structures is often reported in TLE patients (Babb and Brown, 1989; 

Babb 1991; Cendes et al., 1993; Hudson et al., 1993; Williamson et al., 1993; Cendes et 

al., 1994), as well as in animals after an epileptogenic insult, in models of TLE (Schwob 

et al,.1980; Tuunanen et al., 1996, 1999; Covolan and Mello, 2000; Chen and 

Buckmaster, 2005).   Unlike the silver method for observing cell damage, we used a 

marker specific for irreversibly degenerating cells (Schmued et al., 1997), to show that 

the extent of ongoing neurodegeneration during epileptogenesis is greater in the 

amygdala compared to the hippocampus and piriform cortex.  We also show that 

qualitative assessment of neurodegeneration corresponds to the quantitative analysis of 

the number of degenerating cells, supporting the reliability of the qualitative scoring 

method to assess neurodegeneration.    

Neurodegeneration of limbic structures after SE is thought to be initiated by 

excessive glutamate release during prolonged seizure activity, followed by glutamate 

receptor mediated excitotoxic calcium-influx, triggering cell death signaling pathways.  

How significant is cell death in the amygdala during epileptogenesis?  A strong 

excitatory network is required to support epileptic circuits.  Because extensive 

neurodegeneration occurs in the amygdala, remaining neurons may lose the ability to 

produce such a strong excitatory drive necessary for the generation or spread of seizure 
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activity.  However, we have shown that GABAergic interneurons in the BLA are 

especially vulnerable to SE-induced damage (Qashu et al., 2008).  In the BLA, the 

amygdala nucleus most important in the initiation and propagation of seizure activity in 

animal models of TLE (White and Price 1993a, b; Mohapel et al., 1996), the percentage 

of GABAergic neurons of the total neurons is significantly reduced at 7-10 days after SE, 

indicating that GABAergic neurons are more vulnerable to SE-induced injury than 

principal cells (Qashu et al., 2008).  Although significant cell loss occurs in the amygdala 

after KA-SE, the ongoing neurodegeneration may shift the excitatory-inhibitory balance 

during epileptogenesis in favor of hyperexcitability (Smith and Dudek, 1997; Mangan et 

al., 2000), thereby increasing the predisposition for epileptiform activity.   

We observed more extensive degeneration occurring in amygdala compared to the 

hippocampus at this time point in epileptogenesis.  Maximal neuronal damage may occur 

in the hippocampus within a few days after SE, thereafter tapering off (Schmued et al., 

1997).  Thus, the total amount of neuronal loss relative to other limbic structures, which 

was not reported here, may give contradictory results. 

The finding that intervention of prolonged SE with the benzodiazepine, diazepam, 

significantly reduces neurodegeneration in the amygdala and other limbic structures 

associated with epileptogenesis provides useful information for neuroprotective strategies 

after SE and during epileptogenesis.  Benzodiazepine sensitive receptors are densely 

located in limbic structures (Niehoff and Kuhar, 1983; Fritschy and Möhler, 1995), are 

the first line treatment for termination of status epilepticus in humans (Chen and 

Wasterlain, 2006), and to reduce mortality after prolonged SE in animal models of TLE 

(Mello et al., 1993).  As SE duration increases, however, benzodiazepines are less potent 
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as anticonvulsants (Jones et al., 2002) and neuroprotectants (Pitkänen, 2005), and recent 

data suggests that this is due to an internalization of GABAA receptors, as described in 

the hippocampus, beginning in the first hour of SE (Goodkin et al., 2005; Naylor et al., 

2005).  The failure of neuroprotection in the hippocampus by diazepam after 3 hours of 

SE reported previously (Pitkänen 2005) coincides with our results that diazepam 

administration after 3 hours of SE did not reduce neurodegeneration one week after SE in 

the hippocampus.  However, the number of degenerating cells in the amygdala, piriform 

cortex, and endopiriform nucleus was reduced when diazepam was used even 3 hours 

after SE compared to SE that was not terminated with diazepam (Figure 1).  Thus, the 

plastic mechanisms that occur in the hippocampus that diminish the efficacy of diazepam 

may not occur in other limbic structures that retain responsiveness after prolonged SE.  

Likewise, a reduction of GABAA receptor expression has not been reported acutely after 

SE in the amygdala, piriform cortex, or endopiriform nucleus.  Future studies should 

investigate whether GABAA receptors are internalized within the first hour of SE in the 

amygdala.  A reduction of mIPSC amplitude will suggest a reduction of functional 

membrane GABAA receptors.  Western blot analysis of surface expression compared to 

total expression of GABAA receptor subunits to determine specifically if benzodiazepine-

sensitive GABAA receptors are internalized. 

The neuroprotective effect by diazepam administration after prolonged SE may be 

due to SE termination, rather than to a direct anticonvulsant effect by diazepam.  The 

severity of neuronal loss corresponds to the duration of SE (Lemos and Cavalheiro, 1995; 

Gorter et al., 2003), thus, termination of SE alone may be sufficient to reduce the 

subsequent neuronal loss.  After three hours of SE, the dose of diazepam used in the 
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present study (25 mg/kg) is effective at terminating cortical seizure activity within one 

hour of administration.  To be sure that subcortical electrographic seizure activity was 

also attenuated with this dose of diazepam, future studies should employ deep brain 

electrodes in the EEG recordings.    

 

Figure 1. GABAergic interneurons in the BLA are selectively vulnerable to damage 

after KA-SE, compared to pyramidal cells.  (a) In the normal BLA, interneurons (blue 

cells) contribute 15% to the total number of neurons, together with pyramidal cells 

(purple cells).  For simplification, pyramidal cell projections are not shown. (b) After SE 

induced by kainic acid, the BLA undergoes extensive neurodegeneration, to include a 20-

50% loss of total neurons but a 75% loss of interneurons (Tuunanen, et al., 1996). (c) 

Diazepam administration to terminate status epiletpicus after 3 hours is neuroprotective 

in the BLA, such that there is only a 15% loss of total neurons, but a significant loss of 

GABAergic interneurons (43%) still occurs. 

Normal KA +DZPKAa cbNormal KA +DZPKAa cbNormal KA +DZPKAa cb
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Implications for epileptogenesis 

 The present study reports evidence of one mechanism, reduced inhibitory activity in the 

BLA, which may shift the balance between excitatory and inhibitory transmission during 

epileptogenesis, thereby promoting the formation of a hyperexcitable, epileptic circuit. 

We found that GABAergic neurons in the BLA are particularly susceptible to SE-induced 

injury, and the subsequent reduction of inhibitory input in the BLA is insufficiently 

compensated by mechanisms to counterbalance the loss. The greater vulnerability and 

subsequent neurodegeneration of GABAergic neurons after KA-SE may confer to an 

imbalance in the excitability of the BLA, and play an important role in the mechanisms of 

epileptogenesis.  Indeed, after amygdala kindling, when epileptogenic changes are 

thought to occur, stimulation of the BLA more readily generates SE compared to other 

limbic structures (Mohapel et al., 1996).  During epileptogenesis, loss of interneurons 

may lower the threshold for seizure generation in the BLA, and, because the BLA has a 

more extensive projection system than other amygdala nuclei (Krettek and Price, 1978, 

Amaral et al., 1992), including the most efferents to the hippocampus (Pitkänen, 2000), 

the hyperexcitable BLA has the potential to recruit and involve other structures of the 

limbic circuit for the spread of seizure activity.  Thus, net failure of inhibitory 

transmission due to loss of GABAergic neurons in the BLA may play an important role 

in epileptogenesis, and the development of epilepsy.   

Studies that have shown success in reducing the effects of epileptogenesis have 

largely failed to prevent epileptogenesis (André et al., 2001; Brandt et al., 2003; 

Narkilahti et al., 2003; Pitkänen, et al., 2005).  Pitkänen, et al. (2005) reported disease 

modifying effects of SE termination after 3 hours with diazepam, such that rats in which 
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SE was terminated at 3 hours displayed a reduced frequency of spontaneous recurrent 

seizures compared to vehicle treated rats in which SE was not terminated, even though 

the extent of hippocampal neurodegeneration between the two groups was not different.  

We would expect similar results from animals in our study, not only because of SE 

termination, but also because of the significant reduction of neurodegeneration in limbic 

structures that are important for epileptogenesis.  Because the efficacy of many of the 

proposed anti-epileptogenic and/or neuroprotective treatments have been analyzed in a 

limited number of brain areas, we underscore here the need to evaluate structures beyond 

the hippocampus for neuroprotective efficacy.  The amygdala, a limbic structure that 

undergoes extensive neurodegeneration after SE-induced epileptogenesis, responds to 

benzodiazepine treatment after prolonged SE, when the hippocampus does not.  Thus, the 

amygdala may be a more promising target for neuroprotective therapies during 

epileptogenesis.    
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Appendix 

 

Design-based stereology 

The underlying objective of using stereological methods is to obtain an unbiased 

estimation of geometric properties of three-dimensional objects, such as area, volume, 

length, and population size from two-dimensional planar sections (Gundersen and Jensen, 

1987; West, 2002).  The sampling scheme in stereology is “designed”, or defined a 

priori, and is independent of the size, shape, spatial orientation, or spatial distribution of 

the object of interest, to ensure that all objects have the same probability of being 

counted, and are counted once and only once.  Previous model-based quantification 

analyses relied on assumptions of geometric features, and used formulas to correct for 

truncation or over-estimation (Abercrombie and Johnson, 1946; Weibel and Gomez, 

1962).  Incorrect assumptions or misuse of formulas are potential sources of error using 

model-based methods.  Excluding assumptions of geometric properties of the objects to 

be counted in stereology reduces the potential for errors created when using model-based 

methods, providing results that are more accurate and reliable. 

To use stereology as a method of estimating geometric properties of an object of 

interest, the entire anatomical region containing the object must be available and 

distinctly delineated based on natural boundaries.  “Systematic, random sampling” in 

stereology refers to the random selection of a series of systematically cut sections 

containing the object of interest, for example randomly selecting the third series of 

section from a set of five series, and the random selection of systematic counting sites in 

any particular section.  Counting the object of interest in a subset of the entire structure 
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with systematic random sampling permits efficient quantification, while maintaining 

unbiased estimations. 

The past few decades have seen a marked increase in the use of stereology in the 

biological sciences to understand the morphology of organs or structures, particularly in 

the central nervous system (Gundersen et al., 1999; Glaser and Glaser, 2000; West, 

2002).  Examples of the use of stereology in neuroscience include determining the length 

of axons, the volume of brain regions, or, most commonly, the estimation of total 

population of cells in a particular brain structure.  In the following paragraphs, a detailed 

illustration is presented of the quantification of the total number of neurons in a brain 

structure using the Optical Fractionator probe of the StereoInvestigator software 

(Williston, VT), for counting objects in a subfraction of the total volume of the structure. 

 

Quantification of the total number of neurons in the rat basolateral amygdala 

(BLA) 

Thick coronal sections (40 μm) containing the amygdala are cut from fixed, frozen tissue 

dissected from a young adult rat brain.  Because the BLA is a relatively small structure, 

in order to have enough sections for a confident stereological estimation (ideally ≥10), 

sections are cut in a series of six, to increase the number of sections in the series that 

contains the amygdala.  Alternatively, for a relatively large structure, such as the 

hippocampus, there are more rostro-caudal sections that contain the hippocampus; 

therefore a series of ten may be used.  A random series of the six series is selected for 

mounting on slides and cresyl violet staining for Nissl to identify neurons (Figure 1a).   
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Because cresyl violet staining involves incubating the slides in a series of alcohol 

solutions for dehydration, extensive shrinkage of the tissue occurs.  The expected amount 

of shrinkage from cresyl violet staining is 30-50%.  For example, tissue sections cut at 40 

μm might be only 20-28 μm thick after staining.  In preparation of sections for 

stereology, it is vital to minimize the extent of tissue shrinkage, to maximize the amount 

of tissue available for analysis in the z-axis, called the disector height (ideally the disector 

height is ≥20 μm for counting neurons).   

Using a low-magnification objective (2.5 objective), the BLA is traced from 

each section containing the structure, from mounted Nissl-stained sections (Figure 1).  

Sampling parameters, such as the grid size, counting frame, and disector height for each 

counting site are defined before counting, and should remain the same for all sections for 

each animal.  Two hundred is the minimum number of objects to count for each animal; 

higher numbers can be counted to reduce systematic errors, but is more time-consuming.  

Thus, several pilot studies must be done in order to determine the most efficient sampling 

parameters, while maintaining confidence in the total estimation by reducing the error 

contributed by methodological variance.   

The counting frame for each counting site (Figure 2) is dependent upon the 

relative size of the object of interest (a neuron).  It is ideal to be able to count 1-5 objects 

for each grid size.  Based on the size of the neurons in the BLA, the counting frame for 

the sections is 35 μm × 35 µm.  The counting grid (Figure 3) determines the space 

between the two counting sites, such that a larger grid size will increase the space 

between counting sites, and reduce the number of counting sites, and a smaller grid size 

will decrease the space between counting sites, thereby increasing the number of 
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counting sites.  For counting the total number of neurons in the BLA, the counting grid 

size is 190 μm  190 μm.  The disector height delineates the depth of tissue along the Z-

axis in which cells are selected, and depends on the thickness of the tissue, and the size of 

the guard zones (Figure 4).  Cutting thick sections and minimizing the extent of tissue 

shrinkage allows for a larger disector height.  Due to extensive shrinkage of Nissl-stained 

sections, the disector height for counting neurons in the BLA is 12 μm.   Guard zones are 

at the top and bottom of the disector, and serve the purpose of avoiding counting areas of 

the section where cells may have been plucked out during sectioning.  The height of the 

guard zone is ideally set at half the diameter of the object of interest, but should be at 

least 2 μm. 

Once the parameters are set, counting begins at the first counting site on the 

counting frame of the first section (Figure 2).  At a higher magnification (63 or 100 oil 

objectives), the top and bottom of the section are determined and measured, by focusing 

through the optical planes with the z-focus.  Beginning at the top of the section, the z-

focus is used to pass through the guard zone and into the disector height (Figure 4).  Cells 

are counted if a unique point of the object of interest (defined before counting) passes 

through the disector height while moving through the optical planes.  For counting 

neurons from Nissl-stained sections in the BLA, the unique point is the top of the cell.  

Alternatively, the nucleus of the cell can be used as the unique point.  Furthermore, to be 

counted, cells must lie completely within the counting frame, or cross an inclusion line, 

but are not counted if they lie completely outside the counting frame, or if they intersect 

an exclusion line.  The inclusion and exclusion lines are essential in eliminating the bias 

of selecting cells of a certain shape, and ensuring that cells are counted once and only 
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once.  After all satisfactory cells have been selected for a counting site, an automatic 

stage on the microscope moves automatically to the next counting site. 

Once all sites in all counting sites from all sections have been counted (Figure 5), 

the population estimate, N is calculated as the reciprocal of the volume fraction 

multiplied by the sum of the total objects counted (ΣQ) from all counting sites, from all 

sections containing the BLA.  The volume fraction, or the volume of the entire structure 

that was actually analyzed, is calculated based on the sectioning and sampling 

parameters:  

Volume fraction = (ssf)(asf)(hsf) 

The volume fraction is calculated as the product of the section interval (ssf), the 

area sampling fraction (asf), and the height sampling fraction (hsf).  For calculating the 

total number of neurons in the amygdala, in the example above, the section interval is 6.  

The area sampling fraction, or asf, is calculated by the grid size (e.g. 35 μm) divided by 

the counting frame area (e.g. 190 μm  190 μm).  Finally, the height sampling fraction is 

the disector height (12 μm) is divided by the average section thickness (measured at each 

counting site while counting). 

Thus, the total population estimate (N) is: N = (1/ssf)  (1/asf)  (1/hsf)  ΣQ 

 

Summary 

Stereological assessments are accurate and efficient means of quantifying 

geometric properties of three-dimensional, irregularly-shaped objects from two-

dimensional planar sections.  Without relying on object size, shape, orientation, or 

distribution, pre-determined sectioning and sampling parameters and strict counting rules 
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maintain unbiased counting to provide reliable estimations of total populations.  These 

methods have been, and continue to be employed in biological research, including 

neuroscience, to contribute to the understanding of functional and morphological features 

of organ structure and pathology. 



 141 

References 

 

Abercrombie M, Johnson ML (1946) Quantitative histology of Wallerian degeneration. I. 

Nuclear population in rabbit sciatic nerve. J Anat 80:37-50. 

 

Glaser JR, Glaser EM (2000) Stereology, morphometry, and mapping: the whole is 

greater than the sum of its parts. J Chem Neuroanat 20:115-26. 

 

Gundersen HJ, Jensen EB (1987) The efficiency of systemic sampling in stereology and 

its prediction. J Microsc 147:229-63. 

 

Gundersen  HJ, Jensen EB, Klêu K, Nielsen J (1999) The efficiency of systematic 

sampling in stereology – reconsidered. J Microsc 193:199-211. 

 

West MJ (2002) Design-based stereological methods for counting neurons. Prog Brain 

Res 135:43-51. 

 

Weibel ER, Gomez DM (1962) A principle for counting tissue structures on random 

sections. J Appl Physiol 17:343-48.



 142 

 

Figures 

 

  a                                                      b 

 

Figure 1.  Tracings of the BLA from Nissl-stained sections.  For stereological 

quantification of total number of neurons in the BLA, using thick sections (a), cut at 40 

um, tracings (b) of each BLA in each section derived from a series of sections are made 

using a low magnification objective. 
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Figure 2. Counting site for stereological quantification of Nissl-stained neurons in 

the BLA.  The counting frame is 35 μm × 35 µm, and is comprised of two green 

inclusion lines and two red exclusion lines to determine whether or not neurons are 

counted.  Pictured is a neuron (starred) that is counted because its unique point (the top of 

the cell) comes into focus within the optical plane in the disector (not shown), and crosses 

a green inclusion line, but does not cross a red exclusion line. 
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Figure 3. Counting grid superimposed over tracing of BLA.  Counting frames (35 μm 

× 35 µm) are systematically spaced 190 μm × 190 µm apart along a counting grid.  The 

counting grid is randomly superimposed over the tracing of the BLA. 
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Figure 4. Disector height and guard zones in Nissl-stained sections.  Transverse view 

of Nissl-stained sections demonstrating that the disector height (12 μm), where cells are 

counted, is bounded by guard zones (2 μm) that serve to avoid counting the area of a 

section where cells may be removed during sectioning, from the top (plucked cell) or the 

bottom (lost cap). 
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Figure 5. Nissl-stained section of a BLA in which stereological counts have been 

completed.  Counted neurons (orange dots) can be identified on the counting grid. 

 


